Nothing
test_that("Binary treatment", {
skip_on_cran() #many tests, take too long
skip_if_not_installed("rootSolve")
skip_if_not_installed("cobalt")
eps <- if (capabilities("long.double")) 1e-5 else 1e-1
test_data <- readRDS(test_path("fixtures", "test_data.rds"))
expect_no_condition({
W0 <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9,
data = test_data, method = "cbps", estimand = "ATE",
include.obj = TRUE, solver = "optim")
})
sw.opts <- c(FALSE, TRUE)
over.opts <- c("exact", "twostep", "cont")
estimand.opts <- c("ATE", "ATT", "ATC", "ATO")
link.opts <- c("logit", "probit", "loglog", "cauchit")
weight.mat <- matrix(nrow = nrow(test_data),
ncol = length(sw.opts) * length(over.opts) *
length(estimand.opts) * length(link.opts))
colnames(weight.mat) <- rep("", ncol(weight.mat))
k <- 1
for (sw in sw.opts) {
for (over in over.opts) {
for (estimand in estimand.opts) {
for (link in link.opts) {
expect_no_condition({
suppressWarnings({
W <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9,
data = test_data, method = "cbps", estimand = estimand,
over = over != "exact", twostep = if (over == "exact") NULL else over == "twostep",
link = link,
s.weights = if (sw) "SW" else NULL,
include.obj = TRUE, solver = "multiroot")
})
})
n <- sprintf("W_%s_%s_%s_%s", sw, over, estimand, link)
assign(n, W)
if (over == "exact") {
expect_M_parts_okay(W, tolerance = eps)
expect_equal(cobalt::col_w_smd(W$covs, W$treat, W$weights,
s.weights = W$s.weights),
0 * cobalt::col_w_smd(W$covs, W$treat,
s.weights = W$s.weights),
label = sprintf("SMDs for %s", n),
expected.label = "all 0s",
tolerance = eps)
}
expect_true(is.numeric((!!{{ str2lang(n) }})$ps))
expect_false(is_null((!!{{ str2lang(n) }})$obj))
for (i in 0:1) {
e <- {
if (estimand == "ATT" && i == 1) expect_equal
else if (estimand == "ATC" && i == 0) expect_equal
else expect_not_equal
}
e(W$weights[W$treat == i],
rep(1, sum(W$treat == i)),
label = sprintf("%s weights for %s", i, n),
expected.label = "all 1s",
tolerance = eps)
}
if (link != "logit" || estimand != "ATO") {
for (i in seq_len(k)) {
expect_not_equal(W$weights, weight.mat[,i],
label = sprintf("Weights for %s", n),
expected.label = sprintf("weights for model %s", colnames(weight.mat)[i]),
tolerance = min(1e-8, eps))
}
}
weight.mat[,k] <- W$weights
colnames(weight.mat)[k] <- n
k <- k + 1
}
}
}
}
# Estimands
expect_error({
W <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9,
data = test_data, method = "cbps", estimand = "ATM")
}, "not an allowable estimand")
#Non-full rank
expect_no_condition({
W <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 +
I(1 - X5) + I(X9 * 2),
data = test_data, method = "cbps", estimand = "ATE",
include.obj = TRUE)
})
expect_equal(W$weights, W0$weights, tolerance = eps)
})
test_that("Multi-category treatment", {
skip_on_cran() #many tests, take too long
skip_if_not_installed("rootSolve")
skip_if_not_installed("cobalt")
eps <- if (capabilities("long.double")) 1e-5 else 1e-1
test_data <- readRDS(test_path("fixtures", "test_data.rds"))
expect_no_condition({
W0 <- weightit(Am ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9,
data = test_data, method = "cbps", estimand = "ATE",
include.obj = TRUE, solver = "optim")
})
sw.opts <- c(FALSE, TRUE)
over.opts <- c("exact", "twostep", "cont")
estimand.opts <- c("ATE", "ATT", "ATO")
weight.mat <- matrix(nrow = nrow(test_data),
ncol = length(sw.opts) * length(over.opts) *
length(estimand.opts))
colnames(weight.mat) <- rep("", ncol(weight.mat))
k <- 1
for (sw in sw.opts) {
for (over in over.opts) {
for (estimand in estimand.opts) {
expect_no_error({
suppressWarnings({
W <- weightit(Am ~ X1 + X2 + X3 + X4 + X5,
data = test_data, method = "cbps", estimand = estimand,
over = over != "exact", twostep = if (over == "exact") NULL else over == "twostep",
focal = if (estimand == "ATT") "T" else NULL,
s.weights = if (sw) "SW" else NULL,
include.obj = TRUE, solver = "multiroot")
})
})
n <- sprintf("W_%s_%s_%s", sw, over, estimand)
assign(n, W)
if (over == "exact") {
expect_M_parts_okay(W, tolerance = eps)
for (tt in combn(levels(W$treat), 2, simplify = FALSE)) {
in_tt <- W$treat %in% tt
expect_equal(cobalt::col_w_smd(W$covs[in_tt,], W$treat[in_tt], W$weights[in_tt],
s.weights = W$s.weights[in_tt]),
0 * cobalt::col_w_smd(W$covs[in_tt,], W$treat[in_tt],
s.weights = W$s.weights[in_tt]),
label = sprintf("SMDs for %s", n),
expected.label = "all 0s",
tolerance = eps)
}
}
expect_true(is_null((!!{{ str2lang(n) }})$ps))
expect_false(is_null((!!{{ str2lang(n) }})$obj))
for (i in levels(W$treat)) {
e <- {
if (estimand == "ATT" && i == W$focal) expect_equal
else expect_not_equal
}
e(W$weights[W$treat == i],
rep(1, sum(W$treat == i)),
label = sprintf("%s weights for %s", i, n),
expected.label = "all 1s",
tolerance = eps)
}
for (i in seq_len(k - 1)) {
expect_not_equal(W$weights, weight.mat[,i],
label = sprintf("Weights for %s", n),
expected.label = sprintf("weights for %s", colnames(weight.mat)[i]),
tolerance = min(1e-8, eps))
}
colnames(weight.mat)[k] <- n
weight.mat[,k] <- W$weights
k <- k + 1
rm(list = n)
}
}
}
})
test_that("Continuous treatment", {
skip_on_cran() #many tests, take too long
skip_if_not_installed("rootSolve")
skip_if_not_installed("cobalt")
eps <- if (capabilities("long.double")) 1e-5 else 1e-1
test_data <- readRDS(test_path("fixtures", "test_data.rds"))
expect_no_condition({
W0 <- weightit(Ac ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9,
data = test_data, method = "cbps",
include.obj = TRUE, solver = "optim")
})
sw.opts <- c(FALSE, TRUE)
over.opts <- c("exact", "twostep", "cont")
weight.mat <- matrix(nrow = nrow(test_data),
ncol = length(sw.opts) *
length(over.opts))
colnames(weight.mat) <- rep("", ncol(weight.mat))
k <- 1
for (sw in sw.opts) {
for (over in over.opts) {
expect_no_error({
suppressWarnings({
W <- weightit(Ac ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9,
data = test_data, method = "cbps",
over = over != "exact", twostep = if (over == "exact") NULL else over == "twostep",
s.weights = if (sw) "SW" else NULL,
include.obj = TRUE, solver = "multiroot")
})
})
n <- sprintf("W_%s_%s", sw, over)
assign(n, W)
if (over == "exact") {
expect_equal(cobalt::col_w_cov(W$covs, W$treat, W$weights, std = TRUE,
s.weights = W$s.weights),
0 * cobalt::col_w_cov(W$covs, W$treat, std = TRUE,
s.weights = W$s.weights),
label = sprintf("A-X correlations for %s", n),
expected.label = "all 0s",
tolerance = eps)
}
expect_true(is_null((!!{{ str2lang(n) }})$ps))
expect_false(is_null((!!{{ str2lang(n) }})$obj))
for (i in seq_len(k - 1)) {
expect_not_equal(W$weights, weight.mat[,i],
label = sprintf("Weights for %s", n),
expected.label = sprintf("weights for %s", colnames(weight.mat)[i]),
tolerance = min(1e-8, eps))
}
colnames(weight.mat)[k] <- n
weight.mat[,k] <- W$weights
k <- k + 1
rm(list = n)
}
}
#Non-full rank
expect_no_condition({
W <- weightit(Ac ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 +
I(1 - X5) + I(X9 * 2),
data = test_data, method = "cbps",
include.obj = TRUE, solver = "optim")
})
expect_equal(W$weights, W0$weights, tolerance = eps)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.