Nothing
##
## R package abclass developed by Wenjie Wang <wang@wwenjie.org>
## Copyright (C) 2021-2022 Eli Lilly and Company
##
## This file is part of the R package abclass.
##
## The R package abclass is free software: You can redistribute it and/or
## modify it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or any later
## version (at your option). See the GNU General Public License at
## <https://www.gnu.org/licenses/> for details.
##
## The R package abclass is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
##
##' Tune Angle-Based Classifiers by Cross-Validation
##'
##' Tune the regularization parameter for an angle-based large-margin classifier
##' by cross-validation.
##'
##' @inheritParams abclass
##'
##' @param nfolds A positive integer specifying the number of folds for
##' cross-validation. Five-folds cross-validation will be used by default.
##' An error will be thrown out if the \code{nfolds} is specified to be less
##' than 2.
##' @param stratified A logical value indicating if the cross-validation
##' procedure should be stratified by the response label. The default value
##' is \code{TRUE} to ensure the same number of categories be used in
##' validation and training.
##' @param alignment A character vector specifying how to align the lambda
##' sequence used in the main fit with the cross-validation fits. The
##' available options are \code{"fraction"} for allowing cross-validation
##' fits to have their own lambda sequences and \code{"lambda"} for using
##' the same lambda sequence of the main fit. The option \code{"lambda"}
##' will be applied if a meaningful \code{lambda} is specified. The default
##' value is \code{"fraction"}.
##' @param refit A logical value or a named list specifying if and how a refit
##' for those selected predictors should be performed. The default valie is
##' \code{FALSE}.
##'
##' @return An S3 object of class \code{cv.abclass}.
##'
##' @export
cv.abclass <- function(x, y,
intercept = TRUE,
weight = NULL,
loss = c("logistic", "boost", "hinge-boost", "lum"),
control = list(),
nfolds = 5L,
stratified = TRUE,
alignment = c("fraction", "lambda"),
refit = FALSE,
...)
{
## nfolds
nfolds <- as.integer(nfolds)
if (nfolds < 3L) {
stop("The 'nfolds' must be > 2.")
}
## alignment
if (is.numeric(alignment)) {
alignment <- as.integer(alignment[1L])
} else {
all_alignment <- c("fraction", "lambda")
alignment <- match.arg(alignment, choices = all_alignment)
alignment <- match(alignment, all_alignment) - 1L
}
## loss
all_loss <- c("logistic", "boost", "hinge-boost", "lum")
loss <- match.arg(loss, choices = all_loss)
loss2 <- gsub("-", "_", loss, fixed = TRUE)
## controls
dot_list <- list(...)
control <- do.call(abclass.control, modify_list(control, dot_list))
## prepare arguments
args_to_call <- c(
list(x = x,
y = y,
intercept = intercept,
weight = null2num0(weight),
loss = loss2,
nfolds = nfolds,
stratified = stratified,
alignment = alignment,
main_fit = TRUE),
control
)
args_to_call <- args_to_call[
names(args_to_call) %in% formal_names(.abclass)
]
res <- do.call(.abclass, args_to_call)
## add cv idx
cv_idx_list <- with(res$cross_validation,
select_lambda(cv_accuracy_mean, cv_accuracy_sd))
res$cross_validation <- c(res$cross_validation, cv_idx_list)
## refit if needed
if (! isFALSE(refit)) {
if (isTRUE(refit)) {
## default controls
refit <- list(lambda = 1e-6)
}
## TODO allow selection of min and 1se
coef_idx <- res$cross_validation$cv_1se
idx <- which(apply(res$coefficients[- 1, , coef_idx] > 0, 1, any))
## inherit the group weights for those selected predictors
if (! is.null(res$regularization$group_weight)) {
refit$group_weight <- res$regularization$group_weight[idx]
}
refit_control <- modify_list(control, refit)
args_to_call <- c(
list(x = x[, idx, drop = FALSE],
y = y,
## assume intercept, weight, loss are the same with et-lasso
intercept = intercept,
weight = res$weight,
loss = loss2,
nstages = 0,
main_fit = TRUE),
refit_control
)
args_to_call <- args_to_call[
names(args_to_call) %in% formal_names(.abclass)
]
refit_res <- do.call(.abclass, args_to_call)
if (! is.null(refit_res$cross_validation)) {
## add cv idx
cv_idx_list <- with(refit_res$cross_validation,
select_lambda(cv_accuracy_mean, cv_accuracy_sd))
refit_res$cross_validation <- c(refit_res$cross_validation,
cv_idx_list)
}
res$refit <- refit_res[
! names(refit_res) %in% c("intercept", "weight", "loss", "category")
]
res$refit$selected_coef <- idx
} else {
res$refit <- FALSE
}
## add class
class_suffix <- if (control$grouped)
paste0("_group_", control$group_penalty)
else
"_net"
res_cls <- paste0(loss2, class_suffix)
class(res) <- c(res_cls, "cv.abclass", "abclass")
## return
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.