Nothing
##
## R package abclass developed by Wenjie Wang <wang@wwenjie.org>
## Copyright (C) 2021-2025 Eli Lilly and Company
##
## This file is part of the R package abclass.
##
## The R package abclass is free software: You can redistribute it and/or
## modify it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or any later
## version (at your option). See the GNU General Public License at
## <https://www.gnu.org/licenses/> for details.
##
## The R package abclass is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
##
##' Tune Angle-Based Classifiers by Cross-Validation
##'
##' Tune the regularization parameter for an angle-based large-margin classifier
##' by cross-validation.
##'
##' @inheritParams abclass
##'
##' @param nfolds A positive integer specifying the number of folds for
##' cross-validation. Five-folds cross-validation will be used by default.
##' An error will be thrown out if the \code{nfolds} is specified to be less
##' than 2.
##' @param stratified A logical value indicating if the cross-validation
##' procedure should be stratified by the response label. The default value
##' is \code{TRUE} to ensure the same number of categories be used in
##' validation and training.
##' @param alignment A character vector specifying how to align the lambda
##' sequence used in the main fit with the cross-validation fits. The
##' available options are \code{"fraction"} for allowing cross-validation
##' fits to have their own lambda sequences and \code{"lambda"} for using
##' the same lambda sequence of the main fit. The option \code{"lambda"}
##' will be applied if a meaningful \code{lambda} is specified. The default
##' value is \code{"fraction"}.
##' @param refit A logical value indicating if a new classifier should be
##' trained using the selected predictors or a named list that will be
##' passed to \code{abclass.control()} to specify how the new classifier
##' should be trained.
##'
##' @return An S3 object of class \code{cv.abclass} and \code{abclass}.
##'
##' @export
cv.abclass <- function(x, y,
loss = c("logistic", "boost", "hinge.boost", "lum"),
penalty = c("glasso", "lasso"),
weights = NULL,
offset = NULL,
intercept = TRUE,
control = list(),
nfolds = 5L,
stratified = TRUE,
alignment = c("fraction", "lambda"),
refit = FALSE,
...)
{
loss <- match.arg(as.character(loss)[1],
choices = .all_abclass_losses)
penalty <- match.arg(as.character(penalty)[1],
choices = .all_abclass_penalties)
## nfolds
nfolds <- as.integer(nfolds)
if (nfolds < 3L) {
stop("The 'nfolds' must be > 2.")
}
## controls
dot_list <- list(...)
control <- do.call(abclass.control, modify_list(control, dot_list))
## prepare arguments
res <- .abclass(
x = x,
y = y,
loss = loss,
penalty = penalty,
weights = weights,
offset = offset,
intercept = intercept,
control = control,
nfolds = nfolds,
stratified = stratified,
alignment = alignment
)
## add cv idx
cv_idx_list <- with(res$cross_validation,
select_lambda(cv_accuracy_mean, cv_accuracy_sd))
res$cross_validation <- c(res$cross_validation, cv_idx_list)
## refit if needed
if (! isFALSE(refit)) {
if (isTRUE(refit)) {
## default controls
refit <- list(lambda = 1e-6)
}
## TODO allow selection of min and 1se
coef_idx <- res$cross_validation$cv_1se
idx <- which(apply(res$coefficients[- 1, , coef_idx] > 0, 1, any))
## inherit the penalty factors for those selected predictors
if (! is.null(res$regularization$penalty_factor)) {
refit$penalty_factor <- res$regularization$penalty_factor[idx]
}
refit_control <- modify_list(control, refit)
refit_res <- .abclass(
x = x[, idx, drop = FALSE],
y = y,
## assume intercept, weights, loss are the same with
loss = loss,
penalty = penalty,
weights = weights,
offset = offset,
intercept = intercept,
control = refit_control,
nfolds = null0(refit$nfolds),
stratified = ! isFALSE(refit$straitified),
nstages = null0(refit$nstages)
)
if (! is.null(refit_res$cross_validation)) {
## add cv idx
cv_idx_list <- with(refit_res$cross_validation,
select_lambda(cv_accuracy_mean, cv_accuracy_sd))
refit_res$cross_validation <- c(refit_res$cross_validation,
cv_idx_list)
}
res$refit <- refit_res[
! names(refit_res) %in%
c("category", "loss", "penalty", "weights", "offset", "intercept")
]
res$refit$selected_coef <- idx
} else {
res$refit <- FALSE
}
## add class
class(res) <- c("cv.abclass", "abclass")
## return
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.