Nothing
err.regAbcrf <- function(object, training, paral=FALSE, ncores= if(paral) max(detectCores()-1,1) else 1, what="mean")
{
if (!inherits(training, "data.frame"))
stop("training needs to be a data.frame object")
if ( (!is.logical(paral)) || (length(paral) != 1L) )
stop("paral should be TRUE or FALSE")
if(is.na(ncores)){
warning("Unable to automatically detect the number of CPU cores, \n1 CPU core will be used or please specify ncores.")
ncores <- 1
}
if(what!="mean" && what!="median")
stop("incorrect 'what' argument")
ntrain <- nrow(training)
ntree <- object$model.rf$num.trees
mf <- match.call(expand.dots=FALSE)
mf <- mf[1]
mf$formula <- object$formula
mf$data <- training
training <- mf$data
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame() )
mt <- attr(mf, "terms")
resp <- model.response(mf)
inbag <- matrix(unlist(object$model.rf$inbag.counts, use.names=FALSE), ncol=object$model.rf$num.trees, byrow=FALSE)
pred <- predict(object$model.rf, training, predict.all=TRUE , num.threads=ncores)$predictions
if (ntree < 40) stop("the number of trees in the forest should be greater than 40")
sequo <- seq(40,object$model.rf$num.trees, length.out = 20)
if(what=="mean"){
res <- oobErrorsReg(as.integer(floor(sequo)), as.integer(ntrain), as.integer(ntree), as.numeric(resp), inbag, pred)
} else if(what=="median"){
res <- oobMedErrorsReg(as.integer(floor(sequo)), as.integer(ntrain), as.integer(ntree), as.numeric(resp), inbag, pred)
}
plot(floor(sequo), res, ylab="out-of-bag mean squared error",xlab="Number of trees",type="l")
cbind(ntree=floor(sequo), oob_mse=res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.