Nothing
bagging.cv <-
function ( formula, data,v=10, mfinal=100,control, par=FALSE)
{
vardep<-data[,as.character(formula[[2]])]
# n <<- length(vardep)
n <- length(vardep)
#para validacion cruzada 2<v<n
if(v>n) stop(" v should be in [2, n]")
if(v<2) stop(" v should be in [2, n]")
if (par==TRUE) {
# no_cores <- detectCores() - 1 # Calculate the number of cores
no_cores <- 2 # para el check de CRAN
cl <- makeCluster(no_cores) # Initiate cluster
registerDoParallel(cl) #PAra el foreach
# clusterExport(cl, "vardep")
clusterEvalQ(cl, library(adabag))
# for (i in 1:v) {
kk<-foreach(i = 1:v, .combine = rbind, .packages='adabag') %dopar%
{
n <- length(vardep)
test <- v * (0:floor(n/v)) + i
test <- test[test < n + 1]
fit <- bagging(formula, data[-test,],mfinal=mfinal, control=control)
# predclass[test] <- predict.bagging(fit, data[test,])$class
predclass <- predict.bagging(fit, data[test,])$class
x<-data.frame(test, predclass)
return(x)
}
stopCluster(cl)
predclass<-kk$predclass[order(kk$test)]
}
if (par==FALSE) {
predclass <- rep("O",n)
for (i in 1:v) {
test <- v * (0:floor(n/v)) + i
test <- test[test < n + 1]
fit <- bagging(formula, data[-test,],mfinal, control=control)
predclass[test] <- predict.bagging(fit, data[test,])$class
}
}
# para que devuelva la matriz de confusion
tabla <- table(predclass, vardep, dnn=c("Predicted Class", "Observed Class"))
# Para que devuelva el error en newdata
error<- 1- sum(predclass== vardep)/n
output<- list(class=predclass, confusion=tabla, error=error)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.