archetypoids_funct_robust: Archetypoid algorithm with the functional robust Frobenius...

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/archetypoids_funct_robust.R

Description

Archetypoid algorithm with the functional robust Frobenius norm to be used with functional data.

Usage

1
archetypoids_funct_robust(numArchoid, data, huge = 200, ArchObj, PM, prob)

Arguments

numArchoid

Number of archetypoids.

data

Data matrix. Each row corresponds to an observation and each column corresponds to a variable. All variables are numeric.

huge

Penalization added to solve the convex least squares problems.

ArchObj

The list object returned by the stepArchetypesRawData_funct_robust function.

PM

Penalty matrix obtained with eval.penalty.

prob

Probability with values in [0,1].

Value

A list with the following elements:

Author(s)

Irene Epifanio

References

Moliner, J. and Epifanio, I., Robust multivariate and functional archetypal analysis with application to financial time series analysis, 2019. Physica A: Statistical Mechanics and its Applications 519, 195-208. https://doi.org/10.1016/j.physa.2018.12.036

See Also

archetypoids

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
## Not run: 
library(fda)
?growth
str(growth)
hgtm <- t(growth$hgtm)
# Create basis:
basis_fd <- create.bspline.basis(c(1,ncol(hgtm)), 10)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:ncol(hgtm)
temp_fd <- Data2fd(argvals = temp_points, y = growth$hgtm, basisobj = basis_fd)
data_archs <- t(temp_fd$coefs)

lass <- stepArchetypesRawData_funct_robust(data = data_archs, numArch = 3, 
                                           numRep = 5, verbose = FALSE, 
                                           saveHistory = FALSE, PM, prob = 0.8)

afr <- archetypoids_funct_robust(3, data_archs, huge = 200, ArchObj = lass, PM, 0.8)
str(afr)

## End(Not run)                                                          
                                                     

adamethods documentation built on Aug. 4, 2020, 5:08 p.m.