Description Usage Arguments Value Author(s) References Examples
View source: R/stepArchetypesRawData_funct.R
This is a slight modification of stepArchetypesRawData
to use the functional archetype algorithm with the Frobenius norm.
1 2 | stepArchetypesRawData_funct(data, numArch, numRep = 3,
verbose = TRUE, saveHistory = FALSE, PM)
|
data |
Data to obtain archetypes. |
numArch |
Number of archetypes to compute, from 1 to |
numRep |
For each |
verbose |
If TRUE, the progress during execution is shown. |
saveHistory |
Save execution steps. |
PM |
Penalty matrix obtained with |
A list with the archetypes.
Irene Epifanio
Cutler, A. and Breiman, L., Archetypal Analysis. Technometrics, 1994, 36(4), 338-347, https://doi.org/10.2307/1269949
Epifanio, I., Functional archetype and archetypoid analysis, 2016. Computational Statistics and Data Analysis 104, 24-34, https://doi.org/10.1016/j.csda.2016.06.007
Eugster, M.J.A. and Leisch, F., From Spider-Man to Hero - Archetypal Analysis in R, 2009. Journal of Statistical Software 30(8), 1-23, https://doi.org/10.18637/jss.v030.i08
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ## Not run:
library(fda)
?growth
str(growth)
hgtm <- t(growth$hgtm)
# Create basis:
basis_fd <- create.bspline.basis(c(1,ncol(hgtm)), 10)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:ncol(hgtm)
temp_fd <- Data2fd(argvals = temp_points, y = growth$hgtm, basisobj = basis_fd)
data_archs <- t(temp_fd$coefs)
lass <- stepArchetypesRawData_funct(data = data_archs, numArch = 3,
numRep = 5, verbose = FALSE,
saveHistory = FALSE, PM)
str(lass)
length(lass[[1]])
class(lass[[1]])
class(lass[[1]][[5]])
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.