do_fada_multiv_robust: Run the whole archetypoid analysis with the functional...

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/do_fada_multiv_robust.R

Description

This function executes the entire procedure involved in the functional archetypoid analysis. Firstly, the initial vector of archetypoids is obtained using the functional archetypal algorithm and finally, the optimal vector of archetypoids is returned.

Usage

1
2
do_fada_multiv_robust(subset, numArchoid, numRep, huge, prob, compare = FALSE, PM,
                      method = "adjbox")

Arguments

subset

Data to obtain archetypes. In fadalara this is a subset of the entire data frame.

numArchoid

Number of archetypes/archetypoids.

numRep

For each numArch, run the archetype algorithm numRep times.

huge

Penalization to solve the convex least squares problem, see archetypoids.

prob

Probability with values in [0,1].

compare

Boolean argument to compute the non-robust residual sum of squares to compare these results with the ones provided by do_fada.

PM

Penalty matrix obtained with eval.penalty.

method

Method to compute the outliers. So far the only option allowed is 'adjbox' for using adjusted boxplots for skewed distributions. The use of tolerance intervals might also be explored in the future for the multivariate case.

Value

A list with the following elements:

Author(s)

Guillermo Vinue, Irene Epifanio

References

Moliner, J. and Epifanio, I., Robust multivariate and functional archetypal analysis with application to financial time series analysis, 2019. Physica A: Statistical Mechanics and its Applications 519, 195-208. https://doi.org/10.1016/j.physa.2018.12.036

See Also

stepArchetypesRawData_funct_multiv_robust, archetypoids_funct_multiv_robust

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
## Not run: 
library(fda)
?growth
str(growth)
hgtm <- growth$hgtm
hgtf <- growth$hgtf[,1:39]

# Create array:
nvars <- 2
data.array <- array(0, dim = c(dim(hgtm), nvars))
data.array[,,1] <- as.matrix(hgtm)
data.array[,,2] <- as.matrix(hgtf)
rownames(data.array) <- 1:nrow(hgtm)
colnames(data.array) <- colnames(hgtm)
str(data.array)

# Create basis:
nbasis <- 10
basis_fd <- create.bspline.basis(c(1,nrow(hgtm)), nbasis)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:nrow(hgtm)
temp_fd <- Data2fd(argvals = temp_points, y = data.array, basisobj = basis_fd)

X <- array(0, dim = c(dim(t(temp_fd$coefs[,,1])), nvars))
X[,,1] <- t(temp_fd$coef[,,1]) 
X[,,2] <- t(temp_fd$coef[,,2])

# Standardize the variables:
Xs <- X
Xs[,,1] <- scale(X[,,1])
Xs[,,2] <- scale(X[,,2])

suppressWarnings(RNGversion("3.5.0"))
set.seed(2018)
res_fada <- do_fada_multiv_robust(subset = Xs, numArchoid = 3, numRep = 5, huge = 200, 
                                  prob = 0.75, compare = FALSE, PM = PM, method = "adjbox")
str(res_fada)
res_fada$cases
#[1]  8 24 29
res_fada$rss
#[1] 2.301741

## End(Not run)
                                  

adamethods documentation built on Aug. 4, 2020, 5:08 p.m.