Nothing
## **************************************************************************
##
## (c) 2018-2024 Guillaume Guénard
## Department de sciences biologiques
## Université de Montréal
## Montreal, QC, Canada
##
## **Data set: Scotch Whiskey**
##
## **************************************************************************
##
#' Scotch Whiskey Data Set
#'
#' Single Malt Scotch whiskeys from 109 distilleries
#'
#' @docType data
#'
#' @keywords Scotch Whiskey
#'
#' @name ScotchWhiskey
#'
#' @usage data(ScotchWhiskey)
#'
#' @format A list with 12 members:
#' \describe{
#' \item{geo}{A \code{\link[sp]{SpatialPointsDataFrame-class}} object containing
#' the geographic coordinates and other information about the distilleries.}
#' \item{colour}{The whiskey colour coded as a 14-level factor.}
#' \item{nose}{A set of 12 nasal notes (boolean).}
#' \item{body}{A set of 8 body notes (boolean).}
#' \item{palate}{A set of 15 palatine notes (boolean).}
#' \item{finish}{A set of 19 finish (or after-taste) notes (boolean).}
#' \item{nbChar}{Number of characteristics attributed to each distillery for
#' each of the four sets of boolean features: nose, body, palate, finish.}
#' \item{listW}{A \code{listw} object (see \code{\link[spdep]{nb2listw}})
#' containing information about the spatial edges (neighbour links) between the
#' distilleries.}
#' \item{links.mat}{A binary square matrix of the spatial connexions between the
#' distilleries (contiguity matrix).}
#' \item{neighbors}{A \code{\link[sp]{SpatialLinesDataFrame-class}} object
#' containing geographic information about the spatial links between the
#' distilleries.}
#' \item{dist}{A list of distance matrices obtained for each of the four sets of
#' boolean features.}
#' }
#'
#' @details There are 5 data sets: color, nose, body, palate, and finish. The
#' binary (0,1) descriptors are in the same order as on p. 239 of the whisky
#' paper.
#'
#' There are two whiskies in the classification from the Springbank distillery.
#' One pertains to the Islay group, the other to the Western group.
#'
#' Please let us know of the analyses you have performed with the whiskey data,
#' especially if you intend to publish them.
#'
#' The distance matrices were calculated separately as follows for each tasting
#' data set:
#'
#' D = (1 - S4)^0.5,
#'
#' where S4 is the Simple matching coefficient of Sokal & Michener (1958). This
#' coefficient was called S4 in the Gower & Legendre (1986) paper and S1 in the
#' Legendre & Legendre (2012) book. In package \code{ade4}, coefficient
#' D = sqrt(1 - S4) is computed by function \code{dist.binary} using
#' argument \code{"method=2"}.
#'
#' @source
#' Pierre Legendre <pierre.legendre@@umontreal.ca> and François-Joseph
#' Lapointe <francois-joseph.lapointe@@umontreal.ca>, Département de sciences
#' biologiques, Université de Montréal, Montréal, Québec, Canada.
#'
#' @references
#' Lapointe, F.-J. and P. Legendre. 1994. A classification of pure malt Scotch
#' whiskies. Applied Statistics 43: 237-257 \doi{10.2307/2986124}
#'
#' Gower, J.C. and Legendre, P. 1986. Metric and Euclidean properties of
#' dissimilarity coefficients. Journal of Classification, 3, 5-48.
#' \doi{10.1007/BF01896809}
#'
#' Legendre, P. and Legendre, L. 2012. Numerical Ecology. 3rd English edition.
#' Elsevier Science BV, Amsterdam. \doi{10.1016/S0304-3800(00)00291-X}
#'
#' @importFrom sp SpatialPointsDataFrame SpatialLinesDataFrame
#'
#' @examples data(ScotchWhiskey)
#' lapply(ScotchWhiskey,ncol)
#' ScotchWhiskey$nbChar
#' ScotchWhiskey$listW ## attr(ScotchWhiskey$listW,"class")
#' names(ScotchWhiskey)
#' names(ScotchWhiskey$dist)
#'
#' plotWhiskey <- function(main) {
#' plot(x=ScotchWhiskey$geo@coords[,1L]/1000,
#' xlab="Eastings (km)",
#' y=ScotchWhiskey$geo@coords[,2L]/1000,
#' ylab="Northings (km)",
#' main=main,
#' type="n",asp=1)
#' apply(
#' ScotchWhiskey$neighbor@data,1L,
#' function(X,coords) {
#' segments(
#' coords[X[1L],1L]/1000,
#' coords[X[1L],2L]/1000,
#' coords[X[2L],1L]/1000,
#' coords[X[2L],2L]/1000
#' )
#' },
#' coords=ScotchWhiskey$geo@coords
#' )
#' invisible(NULL)
#' }
#'
#' plotWhiskey("Scotch whiskey: peat nose")
#' cols <- c("blue","orange")
#' points(ScotchWhiskey$geo@coords/1000,pch=21L,
#' bg=cols[ScotchWhiskey$nose[,"peat"]+1L])
#' legend(x=50,y=1000,legend=c("Has a peat nose","Has no peat nose"),
#' pch=21L,pt.bg=rev(cols))
#'
#' plotWhiskey("Scotch whiskey: soft body")
#' cols <- c("red","green")
#' points(ScotchWhiskey$geo@coords/1000,pch=21L,
#' bg=cols[ScotchWhiskey$body[,"soft"]+1L])
#' legend(x=50,y=1000,legend=c("Has a soft body","Has no soft body"),
#' pch=21L,pt.bg=rev(cols))
#'
#' plotWhiskey("Scotch whiskey: spicy palate")
#' cols <- c("red","green")
#' points(ScotchWhiskey$geo@coords/1000,pch=21L,
#' bg=cols[ScotchWhiskey$palate[,"spice"]+1L])
#' legend(x=50,y=1000,legend=c("Has a spicy palate","Has no spicy palate"),
#' pch=21L,pt.bg=rev(cols))
#'
#' plotWhiskey("Scotch whiskey: sweet finish")
#' cols <- c("red","green")
#' points(ScotchWhiskey$geo@coords/1000,pch=21L,
#' bg=cols[ScotchWhiskey$finish[,"sweet"]+1L])
#' legend(x=50,y=1000,legend=c("Has a sweet finish","Has no sweet finish"),
#' pch=21L,pt.bg=rev(cols))
#'
#' ## To visualize (part of) the distance matrices:
#' as.matrix(ScotchWhiskey$dist$nose)[1:5,1:5]
#' as.matrix(ScotchWhiskey$dist$body)[1:5,1:5]
#' as.matrix(ScotchWhiskey$dist$palate)[1:5,1:5]
#' as.matrix(ScotchWhiskey$dist$finish)[1:5,1:5]
#'
#' ## The data tables:
#' ScotchWhiskey$colour
#' head(ScotchWhiskey$nose)
#' head(ScotchWhiskey$body)
#' head(ScotchWhiskey$palate)
#' head(ScotchWhiskey$finish)
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.