R/Tiahura.R

## **************************************************************************
##
##    (c) 2018-2024 Guillaume Guénard
##        Department de sciences biologiques
##        Université de Montréal
##        Montreal, QC, Canada
##
##    **Tiahura transect fish data set**
##
## **************************************************************************
##
#' Tiahura Transect Fish Data Set
#' 
#' Fish community composition, ecological traits, and environmental  
#' characteristics observed along a 1-km coral reef transect.
#' 
#' @docType data
#' 
#' @keywords Tiahura
#' 
#' @name Tiahura
#' 
#' @usage data(Tiahura)
#' 
#' @format A list with four elements:
#' \describe{
#' \item{fish}{ A data frame with 22 rows (sites) and 280 columns (fish
#' species) describing the presence (value: 1) or absence (value: 0) of the fish
#' species at the sites. }
#' \item{species}{ A character vector with 280 elements containing the binomial
#' (latin) names of the 280 fish species. }
#' \item{trait}{ A data frame with 280 rows (species) and five columns (traits)
#' containing the species ecological traits (see details). }
#' \item{habitat}{ A data frame with 22 rows (sites) and 10 columns
#' (characteristics) containing the environmental characteristics of the sites
#'  (see details). }
#' \item{reef}{ A data frame with 6 rows (sections) and 3 columns
#' describing the different sections of the transect (see details). }
#' }
#' 
#' @details The Tiahura fish transect data was described and analyzed by
#' Galzin & Legendre (1987). It consists of presence/absence data for 280 fish
#' species observed at $22$ sites along a 1.02 km long coast-to-sea cross-reef
#' transect located near the northwestern corner of the high volcanic island of
#' Moorea (French Polynesia; WGS84: -17.4934, -149.8680). The survey sites were
#' 50 m long. Species presence/absence data were recorded by a diver trained in
#' underwater fish identification. The transect began on a coral sand beach,
#' followed by a zone of detritic sediments, then a dying reef flat, followed by
#' a zone of coral patches. That relatively flat area ended at a 100-m wide -
#' 9-m deep channel, followed by a 490-m wide barrier reef, which ended in a
#' slightly elevated reef ridge, followed by the outer slope into the Pacific
#' Ocean. The survey was terminated at depth of approximately 25 m; this is the
#' maximum depth allowing scuba diving for any length of time without having to
#' perform decompression stops. For further details about the transect and
#' survey method, see Galzin & Legendre (1987).
#' 
#' Ecological traits contained in data frame \code{trait} are
#' \describe{
#' \item{Feeding}{ A seven-level categorical variables describing the feeding
#' habits of the fish species }
#' \item{Ecology}{ A seven-level categorical variable describing the general
#' behavior of the fish species in their habitats }
#' \item{Adult}{ A six-level ordered variables describing the adult sizes of the
#' fish species }
#' \item{Egg}{ A three-level categorical variable describing the types of eggs
#' laid by the fish species }
#' \item{Activity}{ A three-level categorical variable describing the
#' activity rhythm of the fish species }
#' }
#' 
#' Environmental characteristics contained in data frame \code{habitat} are the
#' distance from the shore (in m), the water depth at the site (in cm), and
#' substrate composition. Substrate composition (environmental characteristics
#' 3 - 10) is described by percentage coverage indices of the reef bottom by
#' different materials, based on 50 observation points. These observations
#' points were positioned at 1-m intervals along a 50-m rope. The variables
#' indicate what proportion of the 50 readings pertained to each category of
#' substrate. Several of these categories represent biological materials lying
#' on top of, intermingled with, or attached to the mineral substrate. When the
#' 22 stations are considered globally, these eight substrate categories
#' respectively represent 2.5%, 31.1%, 11.4%, 14.3%, 13.9%, 18.7%, 7.5%, and
#' 0.7% of the observed points.
#' 
#' Data frame \code{reef}, which contains the boundaries of the different
#' sections of the transect, comes in handy for displaying data graphically and
#' interpret results.
#' 
#' This data set was made available to the students in the European Advanced
#' Course "Numerical Analysis in Marine Ecology" given at Observatoire
#' océanologique, Université Paris VI, Villefranche-sur-Mer, on 3 - 20 July
#' 1996.
#' 
#' @source Pierre Legendre <pierre.legendre@@umontreal.ca>, René Galzin
#' <pol@@univ-perp.fr>, Mireille Harmelin-Vivien <Harmelin@@com.univ-mrs.fr>,
#' and Guillaume Guenard <guillaume.guenard@@gmail.com>
#' 
#' @references Galzin, R. & P. Legendre. 1987. The fish communities of a coral
#' reef transect. Pacific Science 41: 158-165.
#' 
#' Legendre, P., R. Galzin & M. Harmelin-Vivien. 1997. Relating behavior to
#' habitat: Solutions to the fourth-corner problem. Ecology 78: 547-562
#' 
#' @examples data(Tiahura)
#' 
#' ## Compute dissimilary matrix from Jaccard's similarity coefficient:
#' tiah.jac <- dist.ldc(Tiahura$fish,method = "jaccard")
#' 
#' ## Constrained clustering of the fish species:
#' tiah.chclust <- constr.hclust(tiah.jac, coords=Tiahura$habitat[,"distance"],
#'                               chron=TRUE)
#' 
#' ## Plotting the results
#' par(mfrow=c(3,1))
#' 
#' ## First graph: constrained clusters
#' par(mar=c(3,6.5,2,2))
#' dst <- Tiahura$habitat[,"distance"]
#' plot(NA, xlim=range(dst), ylim=c(0.5,5.5), yaxt="n",
#'      ylab="Partitions\n\n", xlab="")
#' parts <- c(2,3,5,7,12)
#' cols <- c("turquoise", "orange", "chartreuse", "aquamarine", "blue",
#'           "violet", "pink", "cyan", "green", "red", "cornsilk", "purple")
#' for(i in 1L:length(parts)) {
#'   tiah.chclust$coords[,"y"] <- i
#'   plot(tiah.chclust, parts[i], link=TRUE, lwd=3, hybrids="none",
#'        lwd.pt=0.5, cex=3, pch=21, plot=FALSE,
#'        col=cols[round(seq(1,length(cols), length.out=parts[i]))])
#' }
#' axis(2, at=1:length(parts), labels=paste(parts,"groups"), las=1)
#' 
#' ## Second graph: transect profile
#' par(mar=c(4,6.5,1,2))
#' plot(x=dst, y=Tiahura$habitat[,"depth"],
#'      ylim=c(max(range(Tiahura$habitat[,"depth"])),-300),
#'      las=1, ylab="Depth\n(cm)\n", xlab="", type="l", lwd=2)
#' for(i in 1:nrow(Tiahura$reef)) {
#'   abline(v=Tiahura$reef[i,2], lty=3)
#'   abline(v=Tiahura$reef[i,3], lty=3)
#'   if((Tiahura$reef[i,3] - Tiahura$reef[i,2])<100) {
#'     text(x=(Tiahura$reef[i,2] + Tiahura$reef[i,3])/2, y=2350,
#'          labels=toupper(Tiahura$reef[i,1]),srt=90,adj=0)
#'   } else {
#'     text(x=(Tiahura$reef[i,2] + Tiahura$reef[i,3])/2, y=-150,
#'          labels=toupper(Tiahura$reef[i,1]))
#'   }
#' }
#' 
#' ## Third graph: bottom composition
#' par(mar=c(5,6.5,0,2))
#' plot(NA,xlim=range(dst), ylim=c(0,1), las=1,
#'      ylab="Bottom composition\n(proportions)\n", xlab="Distance (m)")
#' bot <- cbind(0, Tiahura$habitat[,3:10])
#' for(i in 2:9) bot[,i] <- bot[,i] + bot[,i-1]
#' cols <- c("", "grey75", "brown", "grey25", "green", "purple",
#'           "lightgreen", "yellow", "white")
#' for(i in 2:9)
#'   polygon(x=c(dst, rev(dst)),y=c(bot[,i], rev(bot[,i-1]))/50,
#'           col=cols[i])
#' text(x=c(44, 365, 707, 538, 957, 111, 965),
#'      y=c(0.05, 0.47, 0.37, 0.58, 0.42, 0.80, 0.88),
#'      labels=colnames(bot)[2:8], xpd=TRUE)
#' 
#' ## Species presence graph set:
#' plot_slice <- function(sl,split) {
#'   size <- ceiling(length(Tiahura$species)/split)
#'   sp_slice <- size*(sl - 1L) + (1L:size)
#'   image(z=t(as.matrix(Tiahura$fish[,sp_slice])),y=1:nrow(Tiahura$fish),
#'         x=1:length(sp_slice),zlim=c(0,1),col=c("white","black"),axes=FALSE,
#'         ylab="",xlab="")
#'   axis(1L,at=1:length(sp_slice),labels=Tiahura$species[sp_slice],las=2L)
#'   axis(2L,at=1:nrow(Tiahura$fish),label=rownames(Tiahura$fish),las=1L)
#'   invisible(NULL)
#' }
#' 
#' par(mar=c(15,5,2,2))
#' plot_slice(1L,5L)
#' ## plot_slice(2L,5L)
#' ## plot_slice(3L,5L)
#' ## plot_slice(4L,5L)
#' ## plot_slice(5L,5L)
#' 
NULL
##

Try the adespatial package in your browser

Any scripts or data that you put into this service are public.

adespatial documentation built on Sept. 11, 2024, 7:04 p.m.