Nothing
#' Add the Worst or Best Observation for Each By Group as New Records
#'
#' Add the first available record from `events` for each by group as new
#' records, all variables of the selected observation are kept. It can be used
#' for selecting the extreme observation from a series of user-defined events.
#' This distinguishes `derive_extreme_event()` from `derive_extreme_records()`,
#' where extreme records are derived based on certain order of existing
#' variables.
#'
#' @param events Conditions and new values defining events
#'
#' A list of `event()` or `event_joined()` objects is expected. Only
#' observations listed in the `events` are considered for deriving extreme
#' event. If multiple records meet the filter `condition`, take the first
#' record sorted by `order`. The data is grouped by `by_vars`, i.e., summary
#' functions like `all()` or `any()` can be used in `condition`.
#'
#' For `event_joined()` events the observations are selected by calling
#' `filter_joined()`. The `condition` field is passed to the `filter_join` argument.
#'
#' @permitted [event]
#'
#' @param tmp_event_nr_var Temporary event number variable
#'
#' The specified variable is added to all source datasets and is set to the
#' number of the event before selecting the records of the event.
#'
#' It can be used in `order` to determine which record should be used if
#' records from more than one event are selected.
#'
#' The variable is not included in the output dataset.
#'
#' @permitted [var]
#'
#' @param order Sort order
#'
#' If a particular event from `events` has more than one observation, within
#' the event and by group, the records are ordered by the specified order.
#'
#' `r roxygen_order_na_handling()`
#'
#' @permitted [var_list]
#'
#' @param mode Selection mode (first or last)
#'
#' If a particular event from `events` has more than one observation,
#' `"first"`/`"last"` is used to select the first/last record of this type of
#' event sorting by `order`.
#'
#' @permitted [mode]
#'
#' @param source_datasets Source datasets
#'
#' A named list of datasets is expected. The `dataset_name` field of `event()`
#' and `event_joined()` refers to the dataset provided in the list.
#'
#' @permitted [dataset_list]
#'
#' @param set_values_to Variables to be set
#'
#' The specified variables are set to the specified values for the new
#' observations.
#'
#' Set a list of variables to some specified value for the new records
#' + LHS refer to a variable.
#' + RHS refers to the values to set to the variable. This can be a string, a
#' symbol, a numeric value, an expression or NA.
#'
#' For example:
#' ```
#' set_values_to = exprs(
#' PARAMCD = "WOBS",
#' PARAM = "Worst Observations"
#' )
#' ```
#'
#' @permitted [expr_list_formula]
#'
#' @param keep_source_vars Variables to keep from the source dataset
#'
#' For each event the specified variables are kept from the selected
#' observations. The variables specified for `by_vars` and created by
#' `set_values_to` are always kept. The `keep_source_vars` field of
#' the event will take precedence over the value of the `keep_source_vars`
#' argument.
#'
#' @permitted [var_list]
#'
#' @inheritParams filter_extreme
#' @inheritParams derive_summary_records
#'
#' @details
#' 1. For each event select the observations to consider:
#'
#' 1. If the event is of class `event`, the observations of the source dataset
#' are restricted by `condition` and then the first or last (`mode`)
#' observation per by group (`by_vars`) is selected.
#'
#' If the event is of class `event_joined`, `filter_joined()` is called to
#' select the observations.
#'
#' 1. The variables specified by the `set_values_to` field of the event
#' are added to the selected observations.
#' 1. The variable specified for `tmp_event_nr_var` is added and set to
#' the number of the event.
#' 1. Only the variables specified for the `keep_source_vars` field of the
#' event, and the by variables (`by_vars`) and the variables created by
#' `set_values_to` are kept. If `keep_source_vars = NULL` is used for an event
#' in `derive_extreme_event()` the value of the `keep_source_vars` argument of
#' `derive_extreme_event()` is used.
#' 1. All selected observations are bound together.
#' 1. For each group (with respect to the variables specified for the
#' `by_vars` parameter) the first or last observation (with respect to the
#' order specified for the `order` parameter and the mode specified for the
#' `mode` parameter) is selected.
#' 1. The variables specified by the `set_values_to` parameter are added to
#' the selected observations.
#' 1. The observations are added to input dataset.
#'
#' `r roxygen_save_memory()`
#'
#' @return The input dataset with the best or worst observation of each by group
#' added as new observations.
#'
#' @family der_prm_bds_findings
#' @keywords der_prm_bds_findings
#'
#' @seealso [event()], [event_joined()], [derive_vars_extreme_event()]
#'
#' @export
#'
#' @examplesx
#'
#' @caption Add a new record for the worst observation using `event()` objects
#' @info For each subject, the observation containing the worst sleeping problem
#' (if any exist) should be identified and added as a new record, retaining
#' all variables from the original observation. If multiple occurrences of the
#' worst sleeping problem occur, or no sleeping problems, then take the
#' observation occurring at the latest day.
#'
#' - The groups for which new records are added are specified by the `by_vars`
#' argument. Here for each *subject* a record should be added. Thus
#' `by_vars = exprs(STUDYID, USUBJID)` is specified.
#' - The sets of possible sleeping problems are passed through the `events`
#' argument as `event()` objects. Each event contains a `condition` which
#' may or may not be satisfied by each record (or possibly a group of
#' records) within the input dataset `dataset`. Summary functions such as
#' `any()` and `all()` are often handy to use within conditions, as is done
#' here for the third event, which checks that the subject had no sleeping
#' issues. The final event uses a catch-all `condition = TRUE` to ensure all
#' subjects have a new record derived. Note that in this example, as no
#' condition involves analysis of __cross-comparison values of within records__,
#' it is sufficient to use `event()` objects rather than `event_joined()` -
#' see the next example for a more complex condition.
#' - If any subject has one or more records satisfying the conditions from
#' events, we can select just one record using the `order` argument. In this
#' example, the first argument passed to `order` is `event_nr`, which is a
#' temporary variable created through the `tmp_event_nr_var` argument, which
#' numbers the events consecutively. Since `mode = "first"`, we only consider
#' the first event for which a condition is satisfied. Within that event, we
#' consider only the observation with the latest day, because the second
#' argument for the order is `desc(ADY)`.
#' - Once a record is identified as satisfying an event's condition, a new
#' observation is created by the following process:
#' \enumerate{
#' \item the selected record is copied,
#' \item the variables specified in the event's `set_values_to` (here,
#' `AVAL` and `AVALC`) are created/updated,
#' \item the variables specified in `keep_source_vars` (here, `ADY` does due
#' to the use of the tidyselect expression `everything()`) (plus `by_vars`
#' and the variables from `set_values_to`) are kept,
#' \item the variables specified in the global `set_values_to` (here,
#' `PARAM` and `PARAMCD`) are created/updated.
#' }
#'
#' @code
#' library(tibble, warn.conflicts = FALSE)
#' library(dplyr, warn.conflicts = FALSE)
#' library(lubridate, warn.conflicts = FALSE)
#'
#' adqs1 <- tribble(
#' ~USUBJID, ~PARAMCD, ~AVALC, ~ADY,
#' "1", "NO SLEEP", "N", 1,
#' "1", "WAKE UP 3X", "N", 2,
#' "2", "NO SLEEP", "N", 1,
#' "2", "WAKE UP 3X", "Y", 2,
#' "2", "WAKE UP 3X", "Y", 3,
#' "3", "NO SLEEP", NA_character_, 1
#' ) %>%
#' mutate(STUDYID = "AB42")
#'
#' derive_extreme_event(
#' adqs1,
#' by_vars = exprs(STUDYID, USUBJID),
#' events = list(
#' event(
#' condition = PARAMCD == "NO SLEEP" & AVALC == "Y",
#' set_values_to = exprs(AVALC = "No sleep", AVAL = 1)
#' ),
#' event(
#' condition = PARAMCD == "WAKE UP 3X" & AVALC == "Y",
#' set_values_to = exprs(AVALC = "Waking up three times", AVAL = 2)
#' ),
#' event(
#' condition = all(AVALC == "N"),
#' set_values_to = exprs(AVALC = "No sleeping problems", AVAL = 3)
#' ),
#' event(
#' condition = TRUE,
#' set_values_to = exprs(AVALC = "Missing", AVAL = 99)
#' )
#' ),
#' tmp_event_nr_var = event_nr,
#' order = exprs(event_nr, desc(ADY)),
#' mode = "first",
#' set_values_to = exprs(
#' PARAMCD = "WSP",
#' PARAM = "Worst Sleeping Problem"
#' ),
#' keep_source_vars = exprs(everything())
#' ) %>%
#' select(-STUDYID)
#'
#' @caption Events based on comparison across records (`event_joined()`)
#' @info We'll now extend the above example. Specifically, we consider a new
#' possible worst sleeping problem, namely if a subject experiences no
#' sleep on consecutive days.
#'
#' - The "consecutive days" portion of the condition requires records to be
#' compared with each other. This is done by using an `event_joined()` object,
#' specifically by passing `dataset_name = adqs2` to it so that the `adqs2`
#' dataset is joined onto itself. The `condition` now checks for two
#' no sleep records, and crucially compares the `ADY` values to see if
#' they differ by one day. The `.join` syntax distinguishes between the
#' `ADY` value of the parent and joined datasets. As the condition involves
#' `AVALC`, `PARAMCD` and `ADY`, we specify these variables with `join_vars`,
#' and finally, because we wish to compare all records with each other, we
#' select `join_type = "all"`.
#'
#' @code
#' adqs2 <- tribble(
#' ~USUBJID, ~PARAMCD, ~AVALC, ~ADY,
#' "4", "WAKE UP", "N", 1,
#' "4", "NO SLEEP", "Y", 2,
#' "4", "NO SLEEP", "Y", 3,
#' "5", "NO SLEEP", "N", 1,
#' "5", "NO SLEEP", "Y", 2,
#' "5", "WAKE UP 3X", "Y", 3,
#' "5", "NO SLEEP", "Y", 4
#' ) %>%
#' mutate(STUDYID = "AB42")
#'
#' derive_extreme_event(
#' adqs2,
#' by_vars = exprs(STUDYID, USUBJID),
#' events = list(
#' event_joined(
#' join_vars = exprs(AVALC, PARAMCD, ADY),
#' join_type = "all",
#' condition = PARAMCD == "NO SLEEP" & AVALC == "Y" &
#' PARAMCD.join == "NO SLEEP" & AVALC.join == "Y" &
#' ADY == ADY.join + 1,
#' set_values_to = exprs(AVALC = "No sleep two nights in a row", AVAL = 0)
#' ),
#' event(
#' condition = PARAMCD == "NO SLEEP" & AVALC == "Y",
#' set_values_to = exprs(AVALC = "No sleep", AVAL = 1)
#' ),
#' event(
#' condition = PARAMCD == "WAKE UP 3X" & AVALC == "Y",
#' set_values_to = exprs(AVALC = "Waking up three times", AVAL = 2)
#' ),
#' event(
#' condition = all(AVALC == "N"),
#' set_values_to = exprs(
#' AVALC = "No sleeping problems", AVAL = 3
#' )
#' ),
#' event(
#' condition = TRUE,
#' set_values_to = exprs(AVALC = "Missing", AVAL = 99)
#' )
#' ),
#' tmp_event_nr_var = event_nr,
#' order = exprs(event_nr, desc(ADY)),
#' mode = "first",
#' set_values_to = exprs(
#' PARAMCD = "WSP",
#' PARAM = "Worst Sleeping Problem"
#' ),
#' keep_source_vars = exprs(everything())
#' ) %>%
#' select(-STUDYID)
#'
#' @caption Specifying different arguments across `event()` objects
#' @info Here we consider a Hy's Law use case. We are interested in
#' knowing whether a subject's Alkaline Phosphatase has ever been
#' above twice the upper limit of normal range. If so, i.e. if
#' `CRIT1FL` is `Y`, we are interested in the record for the first
#' time this occurs, and if not, we wish to retain the last record.
#' As such, for this case now we need to vary our usage of the
#' `mode` argument dependent on the `event()`.
#'
#' - In first `event()`, since we simply seek the first time that
#' `CRIT1FL` is `"Y"`, it's enough to specify the `condition`,
#' because we inherit `order` and `mode` from the main
#' `derive_extreme_event()` call here which will automatically
#' select the first occurrence by `AVISITN`.
#' - In the second `event()`, we select the last record among the
#' full set of records where `CRIT1FL` are all `"N"` by additionally
#' specifying `mode = "last"` within the `event()`.
#' - Note now the usage of `keep_source_vars = exprs(AVISITN)`
#' rather than `everything()` as in the previous example. This
#' is done to ensure `CRIT1` and `CRIT1FL` are not populated for
#' the new records.
#'
#' @code
#' adhy <- tribble(
#' ~USUBJID, ~AVISITN, ~CRIT1, ~CRIT1FL,
#' "1", 1, "ALT > 2 times ULN", "N",
#' "1", 2, "ALT > 2 times ULN", "N",
#' "2", 1, "ALT > 2 times ULN", "N",
#' "2", 2, "ALT > 2 times ULN", "Y",
#' "2", 3, "ALT > 2 times ULN", "N",
#' "2", 4, "ALT > 2 times ULN", "Y"
#' ) %>%
#' mutate(
#' PARAMCD = "ALT",
#' PARAM = "ALT (U/L)",
#' STUDYID = "AB42"
#' )
#'
#' derive_extreme_event(
#' adhy,
#' by_vars = exprs(STUDYID, USUBJID),
#' events = list(
#' event(
#' condition = CRIT1FL == "Y",
#' set_values_to = exprs(AVALC = "Y")
#' ),
#' event(
#' condition = CRIT1FL == "N",
#' mode = "last",
#' set_values_to = exprs(AVALC = "N")
#' )
#' ),
#' tmp_event_nr_var = event_nr,
#' order = exprs(event_nr, AVISITN),
#' mode = "first",
#' keep_source_vars = exprs(AVISITN),
#' set_values_to = exprs(
#' PARAMCD = "ALT2",
#' PARAM = "ALT > 2 times ULN"
#' )
#' ) %>%
#' select(-STUDYID)
#'
#' @caption A more complex example: Confirmed Best Overall Response
#' (`first/last_cond_upper`, `join_type`, `source_datasets`)
#' @info The final example showcases a use of `derive_extreme_event()`
#' to calculate the Confirmed Best Overall Response (CBOR) in an
#' `ADRS` dataset, as is common in many oncology trials. This example
#' builds on all the previous ones and thus assumes a baseline level
#' of confidence with `derive_extreme_event()`.
#'
#' The following `ADSL` and `ADRS` datasets will be used
#' throughout:
#'
#' @code
#' adsl <- tribble(
#' ~USUBJID, ~TRTSDTC,
#' "1", "2020-01-01",
#' "2", "2019-12-12",
#' "3", "2019-11-11",
#' "4", "2019-12-30",
#' "5", "2020-01-01",
#' "6", "2020-02-02",
#' "7", "2020-02-02",
#' "8", "2020-02-01"
#' ) %>%
#' mutate(
#' TRTSDT = ymd(TRTSDTC),
#' STUDYID = "AB42"
#' )
#'
#' adrs <- tribble(
#' ~USUBJID, ~ADTC, ~AVALC,
#' "1", "2020-01-01", "PR",
#' "1", "2020-02-01", "CR",
#' "1", "2020-02-16", "NE",
#' "1", "2020-03-01", "CR",
#' "1", "2020-04-01", "SD",
#' "2", "2020-01-01", "SD",
#' "2", "2020-02-01", "PR",
#' "2", "2020-03-01", "SD",
#' "2", "2020-03-13", "CR",
#' "4", "2020-01-01", "PR",
#' "4", "2020-03-01", "NE",
#' "4", "2020-04-01", "NE",
#' "4", "2020-05-01", "PR",
#' "5", "2020-01-01", "PR",
#' "5", "2020-01-10", "PR",
#' "5", "2020-01-20", "PR",
#' "6", "2020-02-06", "PR",
#' "6", "2020-02-16", "CR",
#' "6", "2020-03-30", "PR",
#' "7", "2020-02-06", "PR",
#' "7", "2020-02-16", "CR",
#' "7", "2020-04-01", "NE",
#' "8", "2020-02-16", "PD"
#' ) %>%
#' mutate(
#' ADT = ymd(ADTC),
#' STUDYID = "AB42",
#' PARAMCD = "OVR",
#' PARAM = "Overall Response by Investigator"
#' ) %>%
#' derive_vars_merged(
#' dataset_add = adsl,
#' by_vars = exprs(STUDYID, USUBJID),
#' new_vars = exprs(TRTSDT)
#' )
#'
#' @info Since the CBOR derivation contains multiple complex parts, it's
#' convenient to make use of the `description` argument within each event object
#' to describe what condition is being checked.
#'
#' - For the Confirmed Response (CR), for each `"CR"` record in the original `ADRS`
#' dataset that will be identified by the first part of the `condition` argument
#' (`AVALC == "CR"`), we need to use the `first_cond_upper` argument to limit the
#' group of observations to consider alongside it. Namely, we need to look up to
#' and including the second CR (`AVALC.join == "CR"`) over 28 days from the first
#' one (`ADT.join >= ADT + 28`). The observations satisfying `first_cond_upper`
#' then form part of our "join group", meaning that the remaining portions of
#' `condition` which reference joined variables are limited to this group.
#' In particular, within `condition` we use `all()` to check that all observations
#' are either `"CR"` or `"NE"`, and `count_vals()` to ensure at most one is
#' `"NE"`.
#'
#' Note that the selection of `join_type = "after"` is critical here, due to the
#' fact that the restriction implied by `join_type` is applied before the one
#' implied by `first_cond_upper`. Picking the first subject (who was correctly
#' identified as a confirmed responder) as an example, selecting
#' `join_type = "all"` instead of `"after"` would mean the first `"PR"` record
#' from `"2020-01-01"` would also be considered when evaluating the
#' `all(AVALC.join %in% c("CR", "NE"))` portion of `condition`. In turn, the
#' condition would not be satisfied anymore, and in this case, following the
#' later event logic shows the subject would be considered a partial responder
#' instead.
#'
#' - The Partial Response (PR), is very similar; with the difference being that the
#' first portion of `condition` now references `"PR"` and `first_cond_upper`
#' accepts a confirmatory `"PR"` or `"CR"` 28 days later. Note that now we must add
#' `"PR"` as an option within the `all()` condition to account for confirmatory
#' `"PR"`s.
#'
#' - The Stable Disease (SD), Progressive Disease (PD) and Not Evaluable (NE)
#' events are simpler and just require `event()` calls.
#'
#' - Finally, we use a catch-all `event()` with `condition = TRUE` and
#' `dataset_name = "adsl"` to identify those subjects who do not appear in `ADRS`
#' and list their CBOR as `"MISSING"`. Note here the fact that `dataset_name` is
#' set to `"adsl"`, which is a new source dataset. As such it's important in the
#' main `derive_extreme_event()` call to list `adsl` as another source dataset
#' with `source_datasets = list(adsl = adsl)`.
#'
#' @code
#' derive_extreme_event(
#' adrs,
#' by_vars = exprs(STUDYID, USUBJID),
#' tmp_event_nr_var = event_nr,
#' order = exprs(event_nr, ADT),
#' mode = "first",
#' source_datasets = list(adsl = adsl),
#' events = list(
#' event_joined(
#' description = paste(
#' "CR needs to be confirmed by a second CR at least 28 days later",
#' "at most one NE is acceptable between the two assessments"
#' ),
#' join_vars = exprs(AVALC, ADT),
#' join_type = "after",
#' first_cond_upper = AVALC.join == "CR" & ADT.join >= ADT + 28,
#' condition = AVALC == "CR" &
#' all(AVALC.join %in% c("CR", "NE")) &
#' count_vals(var = AVALC.join, val = "NE") <= 1,
#' set_values_to = exprs(AVALC = "CR")
#' ),
#' event_joined(
#' description = paste(
#' "PR needs to be confirmed by a second CR or PR at least 28 days later,",
#' "at most one NE is acceptable between the two assessments"
#' ),
#' join_vars = exprs(AVALC, ADT),
#' join_type = "after",
#' first_cond_upper = AVALC.join %in% c("CR", "PR") & ADT.join >= ADT + 28,
#' condition = AVALC == "PR" &
#' all(AVALC.join %in% c("CR", "PR", "NE")) &
#' count_vals(var = AVALC.join, val = "NE") <= 1,
#' set_values_to = exprs(AVALC = "PR")
#' ),
#' event(
#' description = paste(
#' "CR, PR, or SD are considered as SD if occurring at least 28",
#' "after treatment start"
#' ),
#' condition = AVALC %in% c("CR", "PR", "SD") & ADT >= TRTSDT + 28,
#' set_values_to = exprs(AVALC = "SD")
#' ),
#' event(
#' condition = AVALC == "PD",
#' set_values_to = exprs(AVALC = "PD")
#' ),
#' event(
#' condition = AVALC %in% c("CR", "PR", "SD", "NE"),
#' set_values_to = exprs(AVALC = "NE")
#' ),
#' event(
#' description = "Set response to MISSING for patients without records in ADRS",
#' dataset_name = "adsl",
#' condition = TRUE,
#' set_values_to = exprs(AVALC = "MISSING"),
#' keep_source_vars = exprs(TRTSDT)
#' )
#' ),
#' set_values_to = exprs(
#' PARAMCD = "CBOR",
#' PARAM = "Best Confirmed Overall Response by Investigator"
#' )
#' ) %>%
#' filter(PARAMCD == "CBOR") %>%
#' select(-STUDYID, -ADTC)
#'
#' @caption Further examples
#' @info Equivalent examples for using the`check_type` argument can be found in
#' `derive_extreme_records()`.
derive_extreme_event <- function(dataset = NULL,
by_vars,
events,
tmp_event_nr_var = NULL,
order,
mode,
source_datasets = NULL,
check_type = "warning",
set_values_to = NULL,
keep_source_vars = exprs(everything())) {
# Check input parameters
assert_data_frame(dataset, optional = TRUE)
assert_vars(by_vars)
assert_list_of(events, "event_def")
assert_expr_list(order)
mode <- assert_character_scalar(mode, values = c("first", "last"), case_sensitive = FALSE)
assert_list_of(source_datasets, "data.frame")
source_names <- names(source_datasets)
assert_list_element(
list = events,
element = "dataset_name",
condition = map_lgl(dataset_name, is.null) | dataset_name %in% source_names,
source_names = source_names,
message_text = c(
paste0(
"The dataset names must be included in the list specified for the ",
"{.arg source_datasets} argument."
),
i = paste(
"Following names were provided by {.arg source_datasets}:",
ansi_collapse(source_names)
)
)
)
tmp_event_nr_var <- assert_symbol(enexpr(tmp_event_nr_var), optional = TRUE)
check_type <-
assert_character_scalar(
check_type,
values = c("none", "warning", "error"),
case_sensitive = FALSE
)
assert_varval_list(set_values_to, optional = TRUE)
keep_source_vars <- assert_expr_list(keep_source_vars)
# Create new observations
## Create a dataset (selected_records) from `events`
event_index <- as.list(seq_along(events))
selected_records_ls <- map2(
events,
event_index,
function(event, index) {
if (is.null(event$dataset_name)) {
data_source <- dataset
} else {
data_source <- source_datasets[[event$dataset_name]]
}
if (!is.null(tmp_event_nr_var)) {
data_source <- mutate(data_source, !!tmp_event_nr_var := index)
}
if (is.null(event$order)) {
event_order <- order
} else {
event_order <- event$order
}
if (inherits(event, "event")) {
data_events <- data_source %>%
group_by(!!!by_vars) %>%
filter_if(event$condition) %>%
ungroup()
if (!is.null(event$mode)) {
if (check_type != "none") {
# Check for duplicates
signal_duplicate_records(
dataset = data_events,
by_vars = append(by_vars, event_order),
msg = paste(
"Check duplicates: ", event$dataset_name,
"dataset contains duplicate records with respect to",
"{.var {replace_values_by_names(by_vars)}}"
),
cnd_type = check_type
)
}
data_events <- filter_extreme(
data_events,
by_vars = by_vars,
order = event_order,
mode = event$mode,
check_type = "none"
)
}
} else {
if (check_type != "none") {
# Check for duplicates
signal_duplicate_records(
dataset = data_source,
by_vars = append(by_vars, event_order),
msg = paste(
"Check duplicates: ", event$dataset_name,
"dataset contains duplicate records with respect to",
"{.var {replace_values_by_names(by_vars)}}"
),
cnd_type = check_type
)
}
data_events <- filter_joined(
data_source,
dataset_add = data_source,
by_vars = by_vars,
join_vars = event$join_vars,
join_type = event$join_type,
first_cond_lower = !!event$first_cond_lower,
first_cond_upper = !!event$first_cond_upper,
order = event_order,
check_type = "none",
filter_join = !!event$condition
)
}
if (is.null(event$keep_source_vars)) {
event_keep_source_vars <- keep_source_vars
} else {
event_keep_source_vars <- event$keep_source_vars
}
data_events %>%
process_set_values_to(set_values_to = event$set_values_to) %>%
select(
!!!event_keep_source_vars, !!tmp_event_nr_var, !!!by_vars,
names(event$set_values_to)
)
}
)
selected_records <- bind_rows(selected_records_ls)
if (check_type != "none") {
# Check for duplicates
signal_duplicate_records(
dataset = selected_records,
by_vars = append(by_vars, order),
msg = paste(
"Check duplicates: the dataset which consists of all records selected",
"for any of the events defined by {.arg events} contains duplicate records",
"with respect to {.var {replace_values_by_names(by_vars)}}"
),
cnd_type = check_type
)
}
## filter_extreme
new_obs <- selected_records %>%
filter_extreme(
by_vars = by_vars,
order = order,
mode = mode,
check_type = "none"
) %>%
mutate(!!!set_values_to) %>%
select(-!!tmp_event_nr_var)
# Create output dataset
bind_rows(dataset, new_obs)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.