Description Usage Arguments Value Examples
The variety of a collection of multivariate polynomials is the collection of points at which those polynomials are (simultaneously) equal to 0. variety
uses Bertini to find this set.
1 |
mpolyList |
Bertini code as either a character string or function; see examples |
varOrder |
variable order (see examples) |
... |
stuff to pass to bertini |
an object of class bertini
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | ## Not run:
polys <- mp(c(
"x^2 - y^2 - z^2 - .5",
"x^2 + y^2 + z^2 - 9",
".25 x^2 + .25 y^2 - z^2"
))
variety(polys)
# algebraic solution :
c(sqrt(19)/2, 7/(2*sqrt(5)), 3/sqrt(5)) # +/- each ordinate
# character vectors can be taken in; they're passed to mp
variety(c("y - x^2", "y - x - 2"))
# an example of how varieties are invariant to the
# the generators of the ideal
variety(c("2 x^2 + 3 y^2 - 11", "x^2 - y^2 - 3"))
# the following takes a few seconds to initialize, feel free to them
# gb <- grobner(mp(c("2 x^2 + 3 y^2 - 11", "x^2 - y^2 - 3")))
# variety(gb)
m2("
R = QQ[x,y]
gens gb ideal(2*x^2 + 3*y^2 - 11, x^2 - y^2 - 3)
")
variety(c("y^2 - 1", "x^2 - 4"))
variety(c("x^2 - 4", "y^2 - 1"))
# variable order is by default equal to vars(mpolyList)
# (this finds the zeros of y = x^2 - 1)
variety(c("y", "y - x^2 + 1")) # y, x
vars(mp(c("y", "y - x^2 + 1")))
variety(c("y", "y - x^2 + 1"), c("x", "y")) # x, y
# complex solutions
variety("x^2 + 1")
variety(c("x^2 + 1 + y", "y"))
# multiplicities
variety("x^2")
variety(c("2 x^2 + 1 + y", "y + 1"))
variety(c("x^3 - x^2 y", "y + 2"))
#
p <- mp(c("2 x - 2 - 3 x^2 l - 2 x l",
"2 y - 2 + 2 l y",
"y^2 - x^3 - x^2"))
variety(p)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.