Nothing
test_that("Loop the Loop", {
# Here we do positive regression testing to make sure that we still get
# the same results as previously recorded using testthat::expect_snapshot.
#
# The recorded results are stored in a file at tests/testthat/_snap/<name_of_this_file>.md
#
# We acquire large test coverage by looping over possible argument values,
# using one for-loop for each parameter in the function we are testing.
#
# TODO for allelematch 2.5.3 :
# - Make amMatrix return a class.
# - Bug on line 1253: Change "if(length(cutHeight <= 2))" to "if(length(cutHeight) <= 2)"
# - Bug on line 1264: Change "if(length(matchThreshold <= 2))" to "if(length(matchThreshold) <= 2)"
# - ?amMatrix can be misunderstood to say that one of alleleMismatch, cutHeight and matchThreashold must be present.
# Run different data sets with different qualities through the same loops:
miniExample = data.frame(
"LOC1a" = c(11:14),
"LOC1b" = c(21:24),
"LOC2a" = c(31:33, -99),
"LOC2b" = c(41:44),
"LOC3a" = c(51:53, -99),
"LOC3b" = c(61:64)
)
data("amExample1")
data("amExample2") ; amExample2 = amExample2[c(1:20),] # Just keep the first 20 rows to save speed and disk
data("amExample3") ; amExample3 = amExample3[c(1:20),] # Just keep the first 20 rows to save speed and disk
data("amExample4") ; amExample4 = amExample4[c(1:20),] # Just keep the first 20 rows to save speed and disk
data("amExample5") ; amExample5 = amExample5[c(1:20),] # Just keep the first 20 rows to save speed and disk
amdataMini = amDataset(miniExample)
amdataExample1 = amDataset(amExample1, indexColumn="sampleId", metaDataColumn="knownIndividual")
amdataExample2 = amDataset(amExample2, indexColumn="sampleId", metaDataColumn="knownIndividual")
amdataExample3 = amDataset(amExample3, indexColumn="sampleId", metaDataColumn="knownIndividual")
amdataExample4 = amDataset(amExample4, indexColumn="sampleId", metaDataColumn="knownIndividual")
amdataExample5 = amDataset(amExample5, indexColumn="sampleId", ignoreColumn=c("samplingData", "gender"))
# We want to run amMatrix many times with many combinations of parameters,
# and we want to compare the results with previous runs. Like this:
snapshot_amMatrix <- function(ds, ...) {
# Log the call to the snapshot file:
argstr = helpArgToString(...)
cmdstr = paste("amMatrix(", ds, ", ", argstr, ")", sep="") ; expect_snapshot(cat(cmdstr))
# Capture any errors reported by allelematch:
ret <- tryCatch(
# Make the call to allelematch:
capture.output(amMatrix(get(ds), ...)),
## If the call fails, return the error message and
## describe the method and arguments that threw the error:
error = function(e) {
ret = c(paste("\n Error : ", e$message, "\n Rejected : ", cmdstr, "\n"))
# Differ between expected and unexpected errors:
if (!grepl("SOME TO BE DEFINED KNOWN ERROR", e$message, perl=TRUE)) {
# Some unexpected error happened. Print it to the screen for easier debugging.
message("\n ", ret, sep="")
}
ret
}
)
ret = paste(ret, collapse = "\n")
# Log the result to the snapshot file:
expect_snapshot(cat(ret))
return(ret)
}
# Parameters to amMatrix:
# amMatrix <- function(amDatasetFocal, missingMethod=2)
#
# Here comes the loops:
for (amds in c("amdataMini", "amdataExample1", "amdataExample2", "amdataExample3", "amdataExample4", "amdataExample5")) {
for (mm in c(1,2)) {
snapshot_amMatrix(amds, missingMethod=mm)
}
}
})
test_that("Value from amMatrix() remains stable", {
# data(amExample1)
# expect_equal(!!dim(amExample1), c(20,22))
#
# amdata = amDataset1_1= amDataset(amExample1, indexColumn = "sampleId", metaDataColumn = "knownIndividual")
# expect_snapshot_value(amdata, style = "json2")
# Create valid miniature input sample:
sample = miniExample = data.frame(
"LOC1a" = c(11:14),
"LOC1b" = c(21:24),
"LOC2a" = c(31:33, -99),
"LOC2b" = c(41:44)
)
# Remember how the matrix is calculated for regression testing:
{
mx = amMatrix1 = amMatrix(amDataset(sample))
expect_snapshot_value(mx, style = "json2")
expect_snapshot(
list(
mx1 = amMatrix(amDataset(sample), missingMethod = 1),
mx2 = amMatrix(amDataset(sample), missingMethod = 2)
)
)
}
# Detect changes in the calculation of an amMatrix
# whilst regression testing:
data("amExample2") # Good quality data set
amdataExample2 <- amDataset(amExample2, indexColumn="sampleId",
metaDataColumn="knownIndividual", missingCode="-99")
{
expect_snapshot(mx21 <- amMatrix(amdataExample2, 1))
expect_snapshot_value(mx21, style = "json2")
expect_snapshot(mx22 <- amMatrix(amdataExample2, 2))
expect_snapshot_value(mx22, style = "json2")
}
## The following amMatrix:es get too big for expect_snapshot_value :-(
# data("amExample3") # Marginal quality data set
# amdataExample3 <- amDataset(amExample3, indexColumn="sampleId",
# metaDataColumn="knownIndividual", missingCode="-99")
# {
# expect_snapshot(mx31 <- amMatrix(amdataExample3, missingMethod = 1))
# expect_snapshot_value(mx31, style = "json2")
# }
#
# data("amExample4") # Poor quality example
# amdataExample4 <- amDataset(amExample4, indexColumn="sampleId",
# metaDataColumn="knownIndividual", missingCode="-99")
# {
# expect_snapshot(mx41 <- amMatrix(amdataExample4, 1))
# expect_snapshot_value(mx41, style = "json2")
# }
#
# data("amExample5") # Wildlife example
# amdataExample5 <- amDataset(amExample5, indexColumn="sampleId",
# metaDataColumn="samplingData", missingCode="-99")
# {
# expect_snapshot(mx51 <- amMatrix(amdataExample5, missingMethod = 1))
# expect_snapshot_value(mx51, style = "json2")
# }
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.