R/hr_kde.R

Defines functions hr_kde_ref.track_xy hr_kde_ref lscv local_minima hr_kde_lscv hr_kde_pi.track_xy hr_kde_pi hr_kde_ref_scaled hr_kde_ref_scaled hr_kde.track_xy hr_kde

Documented in hr_kde hr_kde_lscv hr_kde_pi hr_kde_pi.track_xy hr_kde_ref hr_kde_ref_scaled hr_kde_ref.track_xy hr_kde.track_xy

#' @rdname hrest
#' @export
hr_kde <- function(x, ...) {
  UseMethod("hr_kde", x)
}

#' @export
#' @rdname hrest
hr_kde.track_xy <- function(
  x, h = hr_kde_ref(x), trast = make_trast(x),
  levels = 0.95, keep.data = TRUE, wrap = FALSE, ...) {

  checkmate::assert_numeric(levels, lower = 0, upper = 1)
  levels <- sort(levels)

  # Check bandwidth
  if (!is.numeric(h)) {
    stop("hr_kde: bandwidth should be numeric")
  } else if (length(h) > 2) {
    warning("hr_kde: h only first 2 elements used")
    h <- h <- h[1:2]
  } else if(length(h) < 2) {
    warning("hr_kde: same bandwidth is used in x and y direction")
    h <- h <- rep(h, 2)
  }

  # Estimate kernels
  xrange <- c(terra::xmin(trast), terra::xmax(trast))
  yrange <- c(terra::ymin(trast), terra::ymax(trast))
  rncol <- terra::ncol(trast)
  rnrow <- terra::nrow(trast)

  if (!requireNamespace("KernSmooth", quietly = TRUE)) {
    stop("Please install the package `KernSmooth` first.")
  }

  # Create Raster
  kde <- KernSmooth::bkde2D(as.matrix(x[, c("x_", "y_")]), bandwidth = h,
                            range.x = list(xrange, yrange),
                            gridsize = c(rncol, rnrow))

  # Finish output
  kde1 <- trast
  kde1[] <- as.vector(kde$fhat[, ncol(kde$fhat):1])

  attr(kde1, "crs_") <- get_crs(x) # needs to be fixed when updating to terra

  res <- list(
    estimator = "kde",
    h = h,
    ud = if (wrap) terra::wrap(kde1) else kde1,
    trast = if (wrap) suppressWarnings(terra::wrap(trast)) else trast,
    levels = levels,
    crs = get_crs(x),
    data = if(keep.data) x else NULL
  )
  class(res) <- c("kde", "hr_prob", "hr", class(res))
  res
}




#' Select a bandwidth for Kernel Density Estimation
#'
#' Use two dimensional reference bandwidth to select a bandwidth for kernel density estimation.
#' Find the smallest value for bandwidth (h) that results in n polygons
#' (usually n=1) contiguous polygons at a given level.
#'
#' This implementation uses a bisection algorithm to the find the smallest value
#' value for the kernel bandwidth within \code{range} that produces an home-range
#' isopleth at \code{level} consisting of \code{n} polygons. Note, no difference is
#' is made between the two dimensions.
#'
#' @param x A `track_xy*`.
#' @param trast A template `RasterLayer`.
#' @param range Numeric vector, indicating the lower and upper bound of the search range. If \code{range} is to large with regard to \code{trast}, the algorithm will fail.
#' @param num.of.parts Numeric numeric scalar, indicating the number of contiguous  polygons desired. This will usually be one.
#' @param tol Numeric scalar, indicating which difference of to stop.
#' @param max.it Numeric scalar, indicating the maximum number of acceptable iterations.
#' @param levels The home range level.
#' @return \code{list} with the calculated bandwidth, exit status and the number of iteration.
#' @export
#' @references Kie, John G. "A rule-based ad hoc method for selecting a bandwidth in kernel home-range analyses." Animal Biotelemetry 1.1 (2013): 1-12.
#'
hr_kde_ref_scaled <- function(x, ...) {
  UseMethod("hr_kde_ref_scaled", x)
}

#' @export
hr_kde_ref_scaled <- function(
  x, range = hr_kde_ref(x)[1] * c(0.01, 1),
  trast = make_trast(x),
  num.of.parts = 1, levels = 0.95,
  tol = 0.1,
  max.it = 500L) {

  # Input checks
  checkmate::assert_numeric(range, len = 2)
  checkmate::assert_numeric(
    levels, lower = 0.0001, upper = 0.9999, len = 1, finite = TRUE)
  checkmate::assert_integer(max.it)

  hmin <-min(range)
  hmax <- max(range)
  hcur <- mean(c(hmin, hmax))
  success <- FALSE

  for (i in 1:max.it) {
    if (i > 1) {
      hcur <- hnew
    }
    suppressMessages(tmp_est <- hr_isopleths(hr_kde(x, h = c(hcur, hcur),
                                   trast = trast, levels = levels)))
    n_holes <- length(sf::st_geometry(tmp_est)[[1]])

    if (n_holes <= num.of.parts) {
      ## decrease h
      hmax <- hcur
    } else {
      ## increase h
      hmin <- hcur
    }
    hnew <- mean(c(hmax, hmin))
    if (abs(hcur - hnew) <= tol && n_holes <= num.of.parts) {
      success = TRUE
      break
    }
  }

  if (!success) {
    warning("`hr_kde_ref_scaled` did not converge.")
  }

  h <- hcur
  attr(h, "n.iter") <- i
  attr(h, "success") <- success
  h
}



#' `hr_kde_pi` wraps `KernSmooth::dpik` to select bandwidth for kernel density estimation the plug-in-the-equation method in two dimensions.
#'
#' This function calculates bandwidths for kernel density estimation by wrapping `KernSmooth::dpik`. If `correct = TURE`, the bandwidth is trasformed with power 5/6 to correct for using an univariate implementation for bivariate data (Gitzen et. al 2006).

#' @template track_xy_star
#' @template dots_none
#' @param rescale `[character(1)]` \cr Rescaling method for reference bandwidth calculation. Must be one of "unitvar", "xvar", or "none".

#' @param correct Logical scalar that indicates whether or not the estimate should be correct for the two dimensional case.
#' @return The bandwidth, the standardization method and correction.
#' @seealso \code{KernSmooth::dpik}
#' @name bandwidth_pi
#' @export
#' @references Gitzen, R. A., Millspaugh, J. J., & Kernohan, B. J. (2006). Bandwidth selection for fixed-kernel analysis of animal utilization distributions. _Journal of Wildlife Management_, 70(5), 1334-1344.
hr_kde_pi <- function(x, ...) {
  UseMethod("hr_kde_pi", x)
}

#' @export
#' @rdname bandwidth_pi
hr_kde_pi.track_xy <- function(x, rescale = "none", correct = TRUE, ...) {

  if (!rescale %in% c("unitvar", "xvar", "none")) {
    stop("rhrHpi: scale: not one of unitvar, xvar or none")
  }

  xs <- dplyr::pull(x, "x_")
  ys <- dplyr::pull(x, "y_")

  if (rescale == "unitvar") {
    # standardize x and y by unit variance
    xs <- xs / sd(xs)
    ys <- ys / sd(ys)

  } else if (rescale == "xvar") {
    # standardize x and y by
    ys <- (ys / sd(ys)) * sd(xs)
  }

  if (!requireNamespace("KernSmooth", quietly = TRUE)) {
    stop("Please install the package `KernSmooth` first.")
  }

  hx <- KernSmooth::dpik(xs, ...)
  hy <- KernSmooth::dpik(ys, ...)

  h <- c(hx, hy)

  if (rescale == "unitvar") {
    h <- KernSmooth::dpik(xs, ...)
    h <- h * c(sd(x[, 1]), sd(x[, 2]))
  }

  # Gitzen et al. 2006 suggested that if bandwidth is estimated for each coordinate seperately, to correct it x^(5/6)
  if (correct) {
    h <- h^(5/6)
  }

  h
}

#' Least square cross validation bandwidth
#'
#' Use least square cross validation (lscv) to estimate bandwidth for kernel home-range estimation.

#' @template track_xy_star
#' @param trast A template raster.
#' @param range numeric vector with different candidate h values.
#' @param which_min A character indicating if the \code{global} or \code{local} minimum should be searched for.
#' @param rescale `[character(1)]` \cr Rescaling method for reference bandwidth calculation. Must be one of "unitvar", "xvar", or "none".

#' @details `hr_kde_lscv` calculates least square cross validation bandwidth. This implementation is based on Seaman and Powell (1996).  If \code{whichMin} is \code{"global"} the global minimum is returned, else the local minimum with the largest candidate bandwidth is returned.

#' @return \code{vector} of length two.
#' @export
#' @references Seaman, D. E., & Powell, R. A. (1996). An evaluation of the accuracy of kernel density estimators for home range analysis. _Ecology, 77(7)_, 2075-2085.
#'

hr_kde_lscv <- function(
  x,
  range = do.call(seq, as.list(c(hr_kde_ref(x) * c(0.1, 2), length.out=100))),
  which_min = "global", rescale = "none",
  trast = make_trast(x)) {

  if (!rescale %in% c("unitvar", "xvar", "none")) {
    stop("scale: not one of unit, sd or none")
  }

  xs <- dplyr::pull(x, "x_")
  ys <- dplyr::pull(x, "y_")

  if (rescale == "unitvar") {
    ## standardize x and y by unit variance
    xs <- xs / sd(xs)
    ys <- ys / sd(ys)

  } else if (rescale == "xvar") {
    ## standardize x and y by
    ys <- (ys / sd(ys)) * sd(xs)
  }


  ## reference bandwidth
  converged <- TRUE
  res <- lscv(cbind(xs, ys), range)

  if (which_min == "global") {
    h <- range[which.min(res)]
  } else {
    h <- range[max(local_minima(res))]
  }

  ## Did h converge?
  if (range[1] == h | range[length(range)] == h) {
    converged <- FALSE
    warning("hr_kde_lscv: lscv did not converge.")
  }

  ## prepare return
  if (rescale == "unitvar") {
    h <- h * c(sd(x[, 1]), sd(x[, 2]))
  } else {
    h <- c(h, h)
  }
  list(h = h, converged = converged,
       res = res, which_min = which_min, rescale = rescale, range = range)
}

## Helper function from: http://stackoverflow.com/questions/6836409/finding-local-maxima-and-minima
local_minima <- function(x) {
  ## Use -Inf instead if x is numeric (non-integer)
  y <- diff(c(.Machine$integer.max, x)) < 0L
  rle(y)$lengths
  y <- cumsum(rle(y)$lengths)
  y <- y[seq.int(1L, length(y), 2L)]
  if (x[[1]] == x[[2]]) {
    y <- y[-1]
  }
  y
}

lscv <- function(x, hs) {
  n <- nrow(x)
  f <- as.matrix(stats::dist(x))
  f <- f[lower.tri(f)]
  sapply(hs, function(h) {
    out <- sum(exp(-f^2 / (4 * h^2)) - 4 * exp(-f^2 / (2 * h^2)))
    1.0 / (pi * h^2 * n) + (2 * out -3 * n)/(pi * 4. * h^2 * n^2);
  })
}

#' Reference bandwidth
#'
#' Calculate the reference bandwidth for kernel density home-range range estimates.
#' @template track_xy_star
#' @template dots_none
#' @template return_bandwidth
#' @param rescale `[character(1)]` \cr Rescaling method for reference bandwidth calculation. Must be one of "unitvar", "xvar", or "none".
#' @name bandwidth_ref
#' @export


hr_kde_ref <- function(x, ...) {
  UseMethod("hr_kde_ref", x)
}

#' @export
#' @rdname bandwidth_ref
hr_kde_ref.track_xy <- function(x, rescale = "none", ...) {

  if (!rescale %in% c("unitvar", "xvar", "none")) {
    stop("hr_kde_ref: scale: not one of unitvar, xvar or none")
  }

  xs <- x$x_
  ys <- x$y_

  if (rescale == "unitvar") {
    ## standardize x and y by unit variance
    xs <- xs / sd(xs)
    ys <- ys / sd(ys)

  } else if (rescale == "xvar") {
    ## standardize x and y by
    ys <- (ys / sd(ys)) * sd(xs)
  }

  n <- nrow(x)
  h <- sqrt(0.5 * (var(xs) +  var(ys))) * n^(-1/6)
  h <- c(h, h)

  if (rescale == "unitvar") {
    h <- h * c(sd(x$x_), sd(x$y_))
  }
  h
}

Try the amt package in your browser

Any scripts or data that you put into this service are public.

amt documentation built on June 25, 2024, 1:14 a.m.