Nothing
#' Prints summary of Apollo model
#'
#' Receives an estimated model object and prints a summary using the generic summary function.
#' @param object Model object. Estimated model object as returned by function \link{apollo_estimate}.
#' @param ... further arguments passed to or from other methods.
#' @param pTwoSided Logical. Should two-sided p-values be printed instead of one-sided p-values. FALSE by default.
#' #' @return nothing.
#' @export
#' @importFrom stats printCoefmat
summary.apollo <- function(object, ... ,pTwoSided=FALSE){
model = object
cat("\nApollo model summary\n\n")
cat("Model name : ", model$apollo_control$modelName,"\n", sep="")
cat("Model description : ", model$apollo_control$modelDescr,"\n", sep="")
cat("Estimation method : ", model$estimationRoutine, "\n", sep="")
if(!is.null(model$nObsTot)) cat("Modelled outcomes : ",sum(model$nObsTot), "\n", sep="")
if(!model$apollo_control$HB){
cat("\n")
cat("LL(final) : ",round(model$maximum,2),"\n",sep="")
cat("Estimated parameters : ", model$nFreeParams,"\n", sep="")
}else{
cat("\n")
cat("LL(final) : ",round(model$maximum,2),"\n",sep="")
cat("Equiv. estimated parameters : ", model$nFreeParams,"\n", sep="")
# if(model$HB_n_nonrandom>0){
# cat(" (non-random parameters : ", model$HB_n_nonrandom,")\n", sep="")
# }
# if(model$HB_n_random_means>0){
# cat(" (means of random parameters : ", model$HB_n_random_means,")\n", sep="")
# }
# if(model$HB_n_random_covar>0){
# cat(" (covariance matrix terms : ", model$HB_n_random_covar,")\n", sep="")
# }
cat("\nClassical model fit statistics were calculated at parameter values obtained using averaging across the post burn-in iterations.\n")
}
if(!model$apollo_control$HB){
if(pTwoSided) pMult <- 2 else pMult <- 1
if(!is.null(model$bootse)){
se=model$bootse
if(pMult==1){
errors="(bootstrap covariance matrix, 1-sided p-values)"
}else {
errors="(bootstrap covariance matrix, 2-sided p-values)"
}
} else if(!is.null(model$robse)){
se=model$robse
if(pMult==1){
errors="(robust covariance matrix, 1-sided p-values)"
}else {
errors="(robust covariance matrix, 2-sided p-values)"
}
} else {
se=model$se
if(pMult==1){
errors="(classical covariance matrix, 1-sided p-values)"
}else {
errors="(classical covariance matrix, 2-sided p-values)"
}
}
if(all(is.na(se))){
cat("\n\nEstimates (no standard errors computed):\n")
signif(model$estimate[!names(model$estimate)%in%model$apollo_fixed],4)
}else{
cat(paste0("\n\nEstimates ",errors,":\n\n"))
output=cbind(model$estimate,
se,
model$estimate/se,
pMult*(1-stats::pnorm(abs(model$estimate/se))))
tmp=c("estimate","std. error","t-ratio")
#tmp=c(tmp,"p-value")
if(pMult==1){
tmp=c(tmp,"p (1-sided)")
} else{
tmp=c(tmp,"p (2-sided)")
}
colnames(output)=tmp
output=output[!(rownames(output)%in%model$apollo_fixed),]
#printCoefmat(output,digits= max(3L, getOption("digits") - 3L),P.values=TRUE,has.Pvalue=TRUE)
stats::printCoefmat(output,digits= 2,P.values=TRUE,has.Pvalue=TRUE)
}
}else{
cat("\nSummary of parameter chains\n")
if(length(model$apollo_HB$gVarNamesFixed)>0 | length(model$apollo_fixed)>0){
cat("\nNon-random coefficients","\n")
print(round(model$HB_chains_non_random,4))
}
if(any(!is.null(model$apollo_HB$gVarNamesNormal)) && length(model$apollo_HB$gVarNamesNormal)>0){
cat("\nResults for posterior means for random coefficients","\n")
print(round(model$HB_posterior_means_summary,4))
}
}
cat("\n")
apollo_print("For more detailed output, use apollo_modelOutput")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.