Nothing
options(digits = 2)
data <- list(c("A", "B"),
c("A", "B", "C", "G"),
c("C", "D"),
c("C", "D"),
c("E", "F"))
trans <- transactions(data)
##################################################################
# Test the original example from
# Edward R. Omiecinski. Alternative interest measures for mining
# associations in databases. IEEE Transactions on Knowledge and
# Data Engineering, 15(1):57-69, Jan/Feb 2003.
# complains about low support
fsets <-
eclat(
trans,
parameter = list(supp = 0),
control = list(verb = FALSE)
)
# add all-confidence
quality(fsets)$allConfidence <-
interestMeasure(fsets, measure = "allConfidence", trans)
#inspect(fsets[order(size(fsets))])
# check
ac <-
c(
1.00,
0.67,
0.33,
0.33,
0.50,
0.33,
0.33,
0.50,
0.50,
0.33,
0.33,
1.00,
0.33,
0.60,
0.40,
0.40,
0.20,
0.40,
0.20,
0.20
)
expect_equal(round(quality(fsets)$allConfidence, 2), ac)
###################################################################
## test all measures for itemsets
m1 <- interestMeasure(fsets, transactions = trans)
## now recalculate the measures using the transactions
m2 <- interestMeasure(fsets, transactions = trans, reuse = FALSE)
expect_equal(m1, m2)
## check if single itemset returns a single row
m3 <- interestMeasure(fsets[1], transactions = trans)
expect_equal(nrow(m3), 1L)
## check for empty itemset
m4 <- interestMeasure(fsets[0], transactions = trans)
expect_equal(nrow(m4), 0L)
m5 <- interestMeasure(fsets[0], transactions = trans, reuse = FALSE)
expect_equal(nrow(m5), 0L)
###################################################################
# test measures for rules
rules <- apriori(trans,
parameter = list(supp = 0.01, conf = 0.5),
control = list(verb = FALSE))
## calculate all measures (just to see if one creates an error)
m1 <- interestMeasure(rules, transactions = trans)
## ruleset without quality data.frame
rules2 <- rules
quality(rules2) <- quality(rules)[, 0]
mr2 <- interestMeasure(rules2, transactions = trans)
## check if single rule returns a single row
m2 <- interestMeasure(rules[1], transactions = trans)
expect_equal(nrow(m2), 1L)
## coverage
expect_equal(coverage(rules), support(lhs(rules), trans = trans))
expect_equal(coverage(rules, trans = trans, reuse = FALSE),
support(lhs(rules), trans = trans))
## check for empty ruleset
m4 <- interestMeasure(rules[0], transactions = trans)
expect_equal(nrow(m4), 0L)
m5 <- interestMeasure(rules[0], transactions = trans, reuse = TRUE)
expect_equal(nrow(m5), 0L)
## is.redundant (this test does not help much)!
red <- is.redundant(rules)
imp <- interestMeasure(rules, measure = "improvement")
expect_equal(red, imp <= 0)
#inspect(rules[!red])
#inspect(rules[red])
# test support
s_tid <- support(rules, trans, control = list(method = "tidlist"))
s_ptree <- support(rules, trans, control = list(method = "ptree"))
expect_equal(s_tid, s_ptree)
expect_equal(s_tid, quality(rules)$support)
## FIXME: test others
data("Adult")
## Mine association rules.
rules <- apriori(Adult,
parameter = list(
supp = 0.5,
conf = 0.9,
target = "rules"
), control = list(verb = FALSE))
m_r <- interestMeasure(rules, transactions = Adult, reuse = TRUE)
m <- interestMeasure(rules, transactions = Adult, reuse = FALSE)
expect_equal(m_r, m)
#dput(round(m_r, 3))
m_previous <- structure(
list(
support = c(
0.917,
0.953,
0.544,
0.561,
0.605,
0.633,
0.641,
0.664,
0.788,
0.782,
0.814,
0.822,
0.855,
0.871,
0.871,
0.519,
0.519,
0.542,
0.542,
0.531,
0.556,
0.541,
0.566,
0.57,
0.543,
0.547,
0.567,
0.569,
0.59,
0.611,
0.611,
0.719,
0.719,
0.749,
0.749,
0.74,
0.74,
0.779,
0.779,
0.511,
0.511,
0.511,
0.508,
0.518,
0.518,
0.52,
0.52,
0.541,
0.541,
0.68,
0.68,
0.68
),
confidence = c(
0.917,
0.953,
0.929,
0.958,
0.905,
0.947,
0.924,
0.956,
0.922,
0.914,
0.952,
0.916,
0.953,
0.949,
0.913,
0.955,
0.926,
0.92,
0.905,
0.903,
0.946,
0.904,
0.946,
0.942,
0.914,
0.921,
0.955,
0.922,
0.955,
0.953,
0.92,
0.913,
0.92,
0.95,
0.921,
0.947,
0.91,
0.948,
0.912,
0.944,
0.919,
0.903,
0.94,
0.954,
0.913,
0.951,
0.917,
0.952,
0.918,
0.946,
0.908,
0.919
),
lift = c(
1,
1,
1.013,
1.005,
0.987,
0.993,
1.007,
1.003,
1.027,
0.997,
0.998,
0.998,
0.999,
0.996,
0.996,
1.002,
1.009,
1.026,
1.059,
0.984,
0.992,
0.985,
0.993,
0.988,
1.019,
1.004,
1.002,
1.005,
1.002,
1,
1.003,
0.995,
1.025,
0.997,
1.026,
0.994,
0.992,
0.995,
0.994,
0.991,
1.024,
1.056,
0.987,
1,
1.017,
0.998,
1,
0.998,
1.001,
0.992,
0.99,
1.024
),
count = c(
44807,
46560,
26550,
27384,
29553,
30922,
31326,
32431,
38493,
38184,
39742,
40146,
41752,
42525,
42525,
25357,
25357,
26450,
26450,
25950,
27177,
26404,
27651,
27825,
26540,
26728,
27717,
27789,
28803,
29851,
29851,
35140,
35140,
36585,
36585,
36164,
36164,
38066,
38066,
24976,
24976,
24976,
24832,
25307,
25307,
25421,
25421,
26447,
26447,
33232,
33232,
33232
),
coverage = c(
1,
1,
0.585,
0.585,
0.668,
0.668,
0.694,
0.694,
0.855,
0.855,
0.855,
0.897,
0.897,
0.917,
0.953,
0.544,
0.561,
0.588,
0.598,
0.588,
0.588,
0.598,
0.598,
0.605,
0.594,
0.594,
0.594,
0.617,
0.617,
0.641,
0.664,
0.788,
0.782,
0.788,
0.814,
0.782,
0.814,
0.822,
0.855,
0.542,
0.556,
0.566,
0.541,
0.543,
0.567,
0.547,
0.567,
0.569,
0.59,
0.719,
0.749,
0.74
),
rhsSupport = c(
0.917,
0.953,
0.917,
0.953,
0.917,
0.953,
0.917,
0.953,
0.897,
0.917,
0.953,
0.917,
0.953,
0.953,
0.917,
0.953,
0.917,
0.897,
0.855,
0.917,
0.953,
0.917,
0.953,
0.953,
0.897,
0.917,
0.953,
0.917,
0.953,
0.953,
0.917,
0.917,
0.897,
0.953,
0.897,
0.953,
0.917,
0.953,
0.917,
0.953,
0.897,
0.855,
0.953,
0.953,
0.897,
0.953,
0.917,
0.953,
0.917,
0.953,
0.917,
0.897
),
leverage = c(
0,
0,
0.007,
0.003,
-0.008,
-0.004,
0.005,
0.002,
0.021,
-0.003,
-0.001,
-0.001,
-0.001,
-0.004,
-0.004,
0.001,
0.005,
0.014,
0.03,
-0.008,
-0.004,
-0.008,
-0.004,
-0.007,
0.01,
0.002,
0.001,
0.003,
0.001,
0,
0.002,
-0.004,
0.018,
-0.002,
0.019,
-0.005,
-0.006,
-0.004,
-0.005,
-0.005,
0.012,
0.027,-0.007,
0,
0.009,
-0.001,
0,
-0.001,
0,
-0.005,
-0.007,
0.016
),
hyperLift = c(
1,
1,
1.01,
1.003,
0.984,
0.992,
1.005,
1.002,
1.026,
0.995,
0.997,
0.997,
0.998,
0.995,
0.995,
1,
1.007,
1.023,
1.055,
0.982,
0.99,
0.982,
0.991,
0.986,
1.016,
1.001,
1,
1.002,
1,
0.998,
1.001,
0.993,
1.024,
0.996,
1.024,
0.992,
0.99,
0.994,
0.993,
0.988,
1.021,
1.052,
0.984,
0.998,
1.014,
0.996,
0.997,
0.996,
0.998,
0.991,
0.988,
1.022
),
hyperConfidence = c(
0,
0,
1,
1,
0,
0,
1,
1,
1,
0,
0,
0,
0.01,
0,
0,
0.978,
1,
1,
1,
0,
0,
0,
0,
0,
1,
1,
0.983,
1,
0.998,
0.298,
1,
0,
1,
0,
1,
0,
0,
0,
0,
0,
1,
1,
0,
0.61,
1,
0.006,
0.412,
0.028,
0.779,
0,
0,
1
),
fishersExactTest = c(
1,
1,
0,
0,
1,
1,
0,
0,
0,
1,
1,
1,
0.99,
1,
1,
0.022,
0,
0,
0,
1,
1,
1,
1,
1,
0,
0,
0.017,
0,
0.002,
0.702,
0,
1,
0,
1,
0,
1,
1,
1,
1,
1,
0,
0,
1,
0.39,
0,
0.994,
0.588,
0.972,
0.221,
1,
1,
0
),
improvement = c(
0.917,
0.953,
0.012,
0.005,
-0.012,
-0.006,
0.007,
0.003,
0.922,
-0.003,
-0.002,
-0.001,-0.001,
-0.004,
-0.004,
-0.003,
-0.003,
-0.001,
0.905,
-0.014,-0.007,
-0.014,
-0.007,
-0.012,
-0.007,
-0.003,
-0.002,
-0.002,-0.001,
-0.004,
-0.003,
-0.004,
-0.001,
-0.003,
-0.001,
-0.006,-0.007,
-0.005,
-0.006,
-0.009,
-0.003,
-0.002,
-0.013,
-0.003,-0.009,
-0.005,
-0.007,
-0.005,
-0.006,
-0.008,
-0.009,
-0.003
),
chiSquared = c(
NA,
NA,
124.024,
38.278,
194.725,
85.079,
62.203,
25.802,
1847.852,
35.656,
17.552,
12.358,
5.138,
215.573,
215.573,
4.175,
60.714,
403.069,
1471.306,
188.513,
88.095,
184.183,
81.673,
231.929,
224.338,
11.604,
4.589,
20.647,
8.588,
0.259,
11.924,
48.398,
993.053,
33.023,
1240.572,
150.033,
154.846,
131.101,
122.002,
105.056,
310.185,
1195.368,
211.9,
0.091,
169.967,
6.287,
0.042,
3.57,
0.617,
161.375,
157.068,
699.642
),
cosine = c(
0.958,
0.976,
0.742,
0.751,
0.773,
0.793,
0.804,
0.816,
0.9,
0.883,
0.901,
0.906,
0.924,
0.931,
0.931,
0.721,
0.724,
0.745,
0.757,
0.723,
0.743,
0.73,
0.75,
0.75,
0.744,
0.741,
0.754,
0.756,
0.769,
0.782,
0.783,
0.846,
0.859,
0.864,
0.877,
0.858,
0.857,
0.88,
0.88,
0.712,
0.724,
0.735,
0.708,
0.72,
0.726,
0.721,
0.721,
0.735,
0.736,
0.822,
0.821,
0.835
),
conviction = c(
1,
1,
1.165,
1.119,
0.871,
0.883,
1.086,
1.074,
1.31,
0.964,
0.966,
0.982,
0.985,
0.917,
0.953,
1.04,
1.116,
1.29,
1.528,
0.852,
0.862,
0.856,
0.869,
0.799,
1.199,
1.044,
1.038,
1.057,
1.05,
0.992,
1.038,
0.948,
1.287,
0.943,
1.291,
0.883,
0.918,
0.902,
0.936,
0.838,
1.267,
1.498,
0.785,
1.006,
1.18,
0.955,
0.997,
0.967,
1.01,
0.86,
0.901,
1.265
),
gini = c(
NA,
NA,
0,
0,
0.001,
0,
0,
0,
0.007,
0,
0,
0,
0,
0,
0.001,
0,
0,
0.002,
0.007,
0.001,
0,
0.001,
0,
0,
0.001,
0,
0,
0,
0,
0,
0,
0,
0.004,
0,
0.005,
0,
0,
0,
0,
0,
0.001,
0.006,
0,
0,
0.001,
0,
0,
0,
0,
0,
0,
0.003
),
oddsRatio = c(
NA,
NA,
1.441,
1.304,
0.587,
0.634,
1.31,
1.256,
3.84,
0.736,
0.756,
0.816,
0.843,
0,
0,
1.092,
1.291,
1.815,
2.683,
0.618,
0.652,
0.619,
0.66,
0.476,
1.561,
1.12,
1.097,
1.164,
1.136,
0.977,
1.126,
0.739,
2.611,
0.719,
2.963,
0.451,
0.534,
0.435,
0.535,
0.634,
1.69,
2.45,
0.516,
1.013,
1.474,
0.897,
0.993,
0.921,
1.027,
0.489,
0.584,
2.222
),
phi = c(
NA,
NA,
0.05,
0.028,
-0.063,
-0.042,
0.036,
0.023,
0.195,
-0.027,-0.019,
-0.016,
-0.01,
-0.066,
-0.066,
0.009,
0.035,
0.091,
0.174,-0.062,
-0.042,
-0.061,
-0.041,
-0.069,
0.068,
0.015,
0.01,
0.021,
0.013,
-0.002,
0.016,
-0.031,
0.143,
-0.026,
0.159,
-0.055,
-0.056,-0.052,
-0.05,
-0.046,
0.08,
0.156,
-0.066,
0.001,
0.059,
-0.011,-0.001,
-0.009,
0.004,
-0.057,
-0.057,
0.12
),
doc = c(
NA,
NA,
0.028,
0.012,
-0.037,
-0.019,
0.021,
0.011,
0.168,
-0.021,
-0.011,-0.014,
-0.007,
-0.051,
-0.087,
0.004,
0.02,
0.056,
0.125,
-0.035,-0.018,
-0.034,
-0.018,
-0.03,
0.042,
0.009,
0.004,
0.012,
0.006,-0.001,
0.009,
-0.021,
0.105,
-0.013,
0.124,
-0.028,
-0.04,
-0.029,-0.039,
-0.02,
0.049,
0.111,
-0.028,
0.001,
0.036,
-0.005,
-0.001,-0.004,
0.002,
-0.027,
-0.036,
0.083
),
RLD = c(
NA,
NA,
0.141,
0.106,
0.299,
0.268,
0.079,
0.069,
0.237,
0.219,
0.208,
0.157,
0.137,
1,
1,
0.038,
0.104,
0.225,
0.345,
0.247,
0.229,
0.25,
0.225,
0.385,
0.166,
0.042,
0.036,
0.054,
0.047,
0.014,
0.037,
0.202,
0.223,
0.227,
0.226,
0.474,
0.392,
0.503,
0.404,
0.228,
0.21,
0.333,
0.323,
0.006,
0.152,
0.056,
0.004,
0.044,
0.01,
0.416,
0.326,
0.21
),
imbalance = c(
0.083,
0.047,
0.347,
0.377,
0.254,
0.288,
0.23,
0.263,
0.044,
0.063,
0.099,
0.02,
0.056,
0.036,
0.036,
0.419,
0.372,
0.327,
0.282,
0.338,
0.37,
0.327,
0.36,
0.352,
0.32,
0.335,
0.366,
0.311,
0.343,
0.317,
0.261,
0.131,
0.12,
0.166,
0.087,
0.172,
0.105,
0.132,
0.063,
0.419,
0.362,
0.318,
0.419,
0.419,
0.348,
0.414,
0.363,
0.392,
0.339,
0.236,
0.171,
0.164
),
kulczynski = c(
0.959,
0.977,
0.761,
0.773,
0.782,
0.806,
0.812,
0.827,
0.9,
0.883,
0.903,
0.906,
0.925,
0.931,
0.931,
0.75,
0.746,
0.762,
0.769,
0.741,
0.765,
0.746,
0.77,
0.77,
0.76,
0.759,
0.775,
0.771,
0.787,
0.797,
0.793,
0.849,
0.861,
0.868,
0.878,
0.862,
0.859,
0.883,
0.881,
0.74,
0.744,
0.751,
0.737,
0.749,
0.745,
0.749,
0.742,
0.76,
0.754,
0.83,
0.825,
0.839
),
collectiveStrength = c(
0,
0,
2100.469,
1109.947,
885.158,
537.551,
1505.665,
821.045,
2209.719,
444.05,
257.474,
343.017,
199.964,
0,
0,
1095.646,
2071.171,
2983.257,
5296.758,
1183.735,
703.514,
1151.931,
690.502,
528.595,
2702.14,
1763.053,
981.469,
1710.534,
948.714,
805.671,
1476.354,
660.623,
2315.901,
366.007,
2236.759,
250.406,
431.434,
193.157,
331.092,
783.815,
3036.8,
5290.847,
680.099,
1049.923,
2754.658,
967.708,
1737.545,
934.617,
1684.277,
358.06,
645.367,
2372.283
),
jaccard = c(
0.917,
0.953,
0.567,
0.573,
0.617,
0.64,
0.661,
0.675,
0.817,
0.789,
0.818,
0.828,
0.858,
0.871,
0.871,
0.531,
0.541,
0.574,
0.594,
0.545,
0.565,
0.554,
0.574,
0.576,
0.573,
0.567,
0.579,
0.589,
0.601,
0.621,
0.63,
0.73,
0.75,
0.755,
0.779,
0.744,
0.747,
0.783,
0.785,
0.52,
0.543,
0.562,
0.516,
0.53,
0.547,
0.531,
0.54,
0.552,
0.561,
0.686,
0.69,
0.711
),
kappa = c(
0,
0,
0.032,
0.014,
-0.046,-0.024,
0.027,
0.014,
0.191,
-0.026,
-0.016,
-0.016,
-0.009,-0.063,
-0.063,
0.004,
0.021,
0.063,
0.139,
-0.039,
-0.021,
-0.04,-0.021,
-0.035,
0.048,
0.01,
0.005,
0.014,
0.007,
-0.001,
0.011,-0.027,
0.129,
-0.019,
0.15,
-0.04,
-0.051,
-0.04,
-0.048,
-0.021,
0.053,
0.121,
-0.03,
0.001,
0.04,
-0.005,
-0.001,
-0.004,
0.002,-0.036,
-0.046,
0.103
),
mutualInformation = c(
NA,
NA,
0.004,
0.002,
0.007,
0.005,
0.002,
0.001,
0.046,
0.001,
0.001,
0,
0,
NA,
NA,
0,
0.002,
0.012,
0.036,
0.007,
0.005,
0.007,
0.005,
0.013,
0.007,
0,
0,
0.001,
0,
0,
0,
0.002,
0.027,
0.002,
0.033,
0.009,
0.006,
0.008,
0.005,
0.006,
0.01,
0.029,
0.012,
0,
0.005,
0,
0,
0,
0,
0.01,
0.006,
0.02
),
lambda = c(
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0
),
jMeasure = c(
0,
0,
0.001,
0,
0.001,
0,
0,
0,
0.003,
0,
0,
0,
0,
0,
0,
0,
0,
0.002,
0.007,
0.001,
0,
0.001,
0,
0.001,
0.001,
0,
0,
0,
0,
0,
0,
0,
0.002,
0,
0.003,
0,
0,
0,
0,
0,
0.002,
0.006,
0.001,
0,
0.001,
0,
0,
0,
0,
0,
0,
0.002
),
laplace = c(
0.917,
0.953,
0.929,
0.958,
0.905,
0.947,
0.924,
0.956,
0.922,
0.914,
0.952,
0.916,
0.953,
0.949,
0.913,
0.955,
0.926,
0.92,
0.905,
0.903,
0.946,
0.904,
0.946,
0.941,
0.914,
0.921,
0.955,
0.922,
0.955,
0.953,
0.92,
0.913,
0.92,
0.95,
0.921,
0.947,
0.91,
0.948,
0.912,
0.944,
0.919,
0.903,
0.94,
0.954,
0.913,
0.951,
0.917,
0.952,
0.918,
0.946,
0.908,
0.919
),
certainty = c(
0,
0,
0.141,
0.106,
-0.148,
-0.133,
0.079,
0.069,
0.237,
-0.037,
-0.035,
-0.018,-0.016,
-0.09,
-0.049,
0.038,
0.104,
0.225,
0.345,
-0.173,
-0.16,-0.168,
-0.151,
-0.251,
0.166,
0.042,
0.036,
0.054,
0.047,
-0.008,
0.037,
-0.054,
0.223,
-0.061,
0.226,
-0.132,
-0.09,
-0.109,
-0.069,-0.193,
0.21,
0.333,
-0.274,
0.006,
0.152,
-0.047,
-0.003,
-0.034,
0.01,
-0.162,
-0.109,
0.21
),
addedValue = c(
0,
0,
0.012,
0.005,-0.012,
-0.006,
0.007,
0.003,
0.024,
-0.003,
-0.002,
-0.001,-0.001,
-0.004,
-0.004,
0.002,
0.009,
0.023,
0.05,
-0.014,
-0.007,-0.014,
-0.007,
-0.012,
0.017,
0.004,
0.002,
0.004,
0.002,
0,
0.003,
-0.004,
0.023,
-0.003,
0.023,
-0.006,
-0.007,
-0.005,-0.006,
-0.009,
0.022,
0.048,
-0.013,
0,
0.016,
-0.002,
0,
-0.002,
0.001,
-0.008,
-0.009,
0.022
),
maxconfidence = c(
1,
1,
0.929,
0.958,
0.905,
0.947,
0.924,
0.956,
0.922,
0.914,
0.952,
0.916,
0.953,
0.949,
0.949,
0.955,
0.926,
0.92,
0.905,
0.903,
0.946,
0.904,
0.946,
0.942,
0.914,
0.921,
0.955,
0.922,
0.955,
0.953,
0.92,
0.913,
0.92,
0.95,
0.921,
0.947,
0.91,
0.948,
0.912,
0.944,
0.919,
0.903,
0.94,
0.954,
0.913,
0.951,
0.917,
0.952,
0.918,
0.946,
0.908,
0.919
),
rulePowerFactor = c(
0.842,
0.909,
0.505,
0.537,
0.548,
0.6,
0.593,
0.635,
0.726,
0.715,
0.774,
0.753,
0.814,
0.826,
0.795,
0.496,
0.481,
0.498,
0.49,
0.48,
0.526,
0.488,
0.536,
0.536,
0.497,
0.504,
0.542,
0.524,
0.563,
0.582,
0.563,
0.657,
0.662,
0.712,
0.69,
0.701,
0.674,
0.739,
0.711,
0.483,
0.47,
0.462,
0.478,
0.494,
0.473,
0.495,
0.477,
0.515,
0.497,
0.643,
0.618,
0.625
),
ralambondrainy = c(
0.083,
0.047,
0.042,
0.024,
0.063,
0.035,
0.053,
0.03,
0.067,
0.073,
0.041,
0.075,
0.043,
0.047,
0.083,
0.024,
0.042,
0.047,
0.057,
0.057,
0.032,
0.058,
0.032,
0.035,
0.051,
0.047,
0.027,
0.048,
0.027,
0.03,
0.053,
0.069,
0.062,
0.039,
0.065,
0.041,
0.073,
0.043,
0.075,
0.03,
0.045,
0.055,
0.032,
0.025,
0.049,
0.027,
0.047,
0.027,
0.048,
0.039,
0.069,
0.06
),
confirmedConfidence = c(
0.835,
0.907,
0.858,
0.917,
0.81,
0.894,
0.848,
0.913,
0.843,
0.829,
0.903,
0.832,
0.905,
0.898,
0.827,
0.91,
0.852,
0.841,
0.81,
0.806,
0.892,
0.807,
0.892,
0.883,
0.829,
0.842,
0.91,
0.844,
0.911,
0.906,
0.841,
0.826,
0.841,
0.901,
0.841,
0.894,
0.82,
0.896,
0.823,
0.889,
0.838,
0.807,
0.881,
0.907,
0.826,
0.902,
0.834,
0.903,
0.836,
0.891,
0.817,
0.838
),
sebag = c(
11.105,
20.403,
13.098,
22.954,
9.542,
17.895,
12.142,
21.987,
11.775,
10.672,
19.674,
10.891,
20.073,
18.635,
10.539,
21.255,
12.51,
11.575,
9.538,
9.318,
17.444,
9.366,
17.59,
16.102,
10.684,
11.641,
21.207,
11.795,
21.463,
20.238,
11.57,
10.48,
11.544,
19.175,
11.589,
17.903,
10.107,
18.301,
10.327,
16.944,
11.348,
9.337,
15.796,
20.525,
10.501,
19.45,
11.072,
19.707,
11.225,
17.417,
9.911,
11.334
),
counterexample = c(
0.91,
0.951,
0.924,
0.956,
0.895,
0.944,
0.918,
0.955,
0.915,
0.906,
0.949,
0.908,
0.95,
0.946,
0.905,
0.953,
0.92,
0.914,
0.895,
0.893,
0.943,
0.893,
0.943,
0.938,
0.906,
0.914,
0.953,
0.915,
0.953,
0.951,
0.914,
0.905,
0.913,
0.948,
0.914,
0.944,
0.901,
0.945,
0.903,
0.941,
0.912,
0.893,
0.937,
0.951,
0.905,
0.949,
0.91,
0.949,
0.911,
0.943,
0.899,
0.912
),
casualSupport = c(
1.752,
1.86,
1.419,
1.49,
1.459,
1.551,
1.506,
1.587,
1.619,
1.626,
1.726,
1.664,
1.766,
1.777,
1.705,
1.448,
1.395,
1.392,
1.34,
1.392,
1.478,
1.4,
1.487,
1.488,
1.39,
1.418,
1.494,
1.438,
1.516,
1.534,
1.476,
1.568,
1.555,
1.663,
1.582,
1.652,
1.585,
1.69,
1.621,
1.434,
1.364,
1.312,
1.43,
1.446,
1.366,
1.447,
1.391,
1.467,
1.411,
1.595,
1.529,
1.518
),
casualConfidence = c(
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
),
leastContradiction = c(
1,
1,
0.593,
0.588,
0.66,
0.664,
0.699,
0.697,
0.878,
0.852,
0.854,
0.896,
0.897,
0.913,
0.949,
0.545,
0.566,
0.603,
0.633,
0.579,
0.584,
0.589,
0.594,
0.598,
0.605,
0.597,
0.595,
0.62,
0.619,
0.641,
0.666,
0.784,
0.802,
0.786,
0.835,
0.777,
0.807,
0.818,
0.85,
0.536,
0.57,
0.598,
0.533,
0.544,
0.577,
0.546,
0.567,
0.568,
0.59,
0.714,
0.742,
0.758
),
centeredConfidence = c(
0,
0,
0.012,
0.005,
-0.012,
-0.006,
0.007,
0.003,
0.024,
-0.003,
-0.002,
-0.001,
-0.001,
-0.004,-0.004,
0.002,
0.009,
0.023,
0.05,
-0.014,
-0.007,
-0.014,-0.007,
-0.012,
0.017,
0.004,
0.002,
0.004,
0.002,
0,
0.003,-0.004,
0.023,
-0.003,
0.023,
-0.006,
-0.007,
-0.005,
-0.006,-0.009,
0.022,
0.048,
-0.013,
0,
0.016,
-0.002,
0,
-0.002,
0.001,
-0.008,
-0.009,
0.022
),
varyingLiaison = c(
0,
0,
0.013,
0.005,
-0.013,
-0.007,
0.007,
0.003,
0.027,
-0.003,
-0.002,-0.002,
-0.001,
-0.004,
-0.004,
0.002,
0.009,
0.026,
0.059,-0.016,
-0.008,
-0.015,
-0.007,
-0.012,
0.019,
0.004,
0.002,
0.005,
0.002,
0,
0.003,
-0.005,
0.025,
-0.003,
0.026,
-0.006,-0.008,
-0.005,
-0.006,
-0.009,
0.024,
0.056,
-0.013,
0,
0.017,
-0.002,
0,
-0.002,
0.001,
-0.008,
-0.01,
0.024
),
yuleQ = c(
NA,
NA,
0.181,
0.132,
-0.26,
-0.224,
0.134,
0.113,
0.587,
-0.152,-0.139,
-0.102,
-0.085,
-1,
-1,
0.044,
0.127,
0.289,
0.457,-0.236,
-0.211,
-0.235,
-0.204,
-0.355,
0.219,
0.056,
0.046,
0.076,
0.064,
-0.011,
0.059,
-0.15,
0.446,
-0.164,
0.495,-0.378,
-0.303,
-0.394,
-0.303,
-0.224,
0.257,
0.42,
-0.319,
0.006,
0.192,
-0.054,
-0.003,
-0.041,
0.013,
-0.343,
-0.263,
0.379
),
yuleY = c(
NA,
NA,
0.091,
0.066,
-0.132,
-0.113,
0.067,
0.057,
0.324,
-0.076,
-0.07,
-0.051,
-0.043,
-1,
-1,
0.022,
0.064,
0.148,
0.242,
-0.12,
-0.107,
-0.119,
-0.103,
-0.183,
0.111,
0.028,
0.023,
0.038,
0.032,
-0.006,
0.03,
-0.075,
0.235,
-0.082,
0.265,
-0.196,
-0.155,
-0.205,
-0.155,
-0.113,
0.131,
0.22,
-0.164,
0.003,
0.097,
-0.027,
-0.002,
-0.021,
0.007,
-0.177,
-0.134,
0.197
),
lerman = c(
0,
0,
2.062,
0.861,-2.309,
-1.148,
1.254,
0.607,
5.242,
-0.653,
-0.345,
-0.324,-0.157,
-0.912,
-0.912,
0.298,
1.484,
4.126,
9.256,
-2.532,-1.302,
-2.472,
-1.238,
-2.069,
3.056,
0.624,
0.295,
0.808,
0.392,
-0.066,
0.575,
-0.92,
4.715,
-0.572,
4.869,
-1.237,-1.544,
-1.044,
-1.21,
-1.5,
3.757,
8.671,
-2.133,
0.044,
2.746,
-0.365,
-0.039,
-0.268,
0.145,
-1.454,
-1.805,
4.316
),
implicationIndex = c(
0,
0,
-6.871,
-3.891,
7.696,
5.185,-4.177,
-2.743,
-15.504,
2.178,
1.557,
1.078,
0.709,
4.12,
3.04,
-1.348,
-4.947,
-12.203,
-22.48,
8.438,
5.88,
8.238,
5.592,
9.344,
-9.038,
-2.078,
-1.332,
-2.693,
-1.77,
0.298,-1.917,
3.067,
-13.945,
2.583,
-14.402,
5.587,
5.145,
4.717,
4.031,
6.776,
-11.112,
-21.058,
9.633,
-0.199,
-8.122,
1.647,
0.13,
1.211,
-0.482,
6.569,
6.013,
-12.766
),
importance = c(
0.264,
0.28,
0.013,
0.005,
-0.017,
-0.008,
0.01,
0.005,
0.087,
-0.01,-0.005,
-0.007,
-0.003,
-0.023,
-0.039,
0.002,
0.009,
0.027,
0.064,
-0.016,
-0.008,
-0.016,
-0.008,
-0.014,
0.02,
0.004,
0.002,
0.006,
0.003,
0,
0.004,
-0.01,
0.052,
-0.006,
0.063,-0.013,
-0.019,
-0.013,
-0.018,
-0.009,
0.024,
0.057,
-0.013,
0,
0.018,
-0.002,
0,
-0.002,
0.001,
-0.012,
-0.017,
0.041
),
stdLift = c(
1,
1,
0.291,
0.477,
0.051,
0.243,
0.239,
0.354,
0.217,
0.113,
0.115,
0.086,
0.089,
0,
0,
0.44,
0.26,
0.205,
0.051,
0.031,
0.317,
0.035,
0.311,
0.243,
0.144,
0.209,
0.427,
0.218,
0.412,
0.354,
0.204,
0.129,
0.203,
0.164,
0.206,
0.115,
0.1,
0.089,
0.086,
0.274,
0.19,
0.033,
0.207,
0.418,
0.13,
0.427,
0.172,
0.412,
0.182,
0.164,
0.084,
0.189
),
boost = c(
Inf,
Inf,
1.013,
1.005,
0.987,
0.993,
1.007,
1.003,
Inf,
0.997,
0.998,
0.998,
0.999,
0.996,
0.996,
0.997,
0.997,
0.999,
Inf,
0.984,
0.992,
0.985,
0.993,
0.988,
0.992,
0.997,
0.998,
0.998,
0.999,
0.996,
0.996,
0.995,
0.998,
0.997,
0.999,
0.994,
0.992,
0.995,
0.994,
0.991,
0.997,
0.998,
0.987,
0.997,
0.991,
0.994,
0.993,
0.995,
0.994,
0.992,
0.99,
0.997
),
table.n11 = c(
44807,
46560,
26550,
27384,
29553,
30922,
31326,
32431,
38493,
38184,
39742,
40146,
41752,
42525,
42525,
25357,
25357,
26450,
26450,
25950,
27177,
26404,
27651,
27825,
26540,
26728,
27717,
27789,
28803,
29851,
29851,
35140,
35140,
36585,
36585,
36164,
36164,
38066,
38066,
24976,
24976,
24976,
24832,
25307,
25307,
25421,
25421,
26447,
26447,
33232,
33232,
33232
),
table.n01 = c(
0,
0,
18257,
19176,
15254,
15638,
13481,
14129,
5339,
6623,
6818,
4661,
4808,
4035,
2282,
21203,
19450,
17382,
15312,
18857,
19383,
18403,
18909,
18735,
17292,
18079,
18843,
17018,
17757,
16709,
14956,
9667,
8692,
9975,
7247,
10396,
8643,
8494,
6741,
21584,
18856,
16786,
21728,
21253,
18525,
21139,
19386,
20113,
18360,
13328,
11575,
10600
),
table.n10 = c(
4035,
2282,
2027,
1193,
3097,
1728,
2580,
1475,
3269,
3578,
2020,
3686,
2080,
2282,
4035,
1193,
2027,
2285,
2773,
2785,
1558,
2819,
1572,
1728,
2484,
2296,
1307,
2356,
1342,
1475,
2580,
3353,
3044,
1908,
3157,
2020,
3578,
2080,
3686,
1474,
2201,
2675,
1572,
1233,
2410,
1307,
2296,
1342,
2356,
1908,
3353,
2932
),
table.n00 = c(
0,
0,
2008,
1089,
938,
554,
1455,
807,
1741,
457,
262,
349,
202,
0,
0,
1089,
2008,
2725,
4307,
1250,
724,
1216,
710,
554,
2526,
1739,
975,
1679,
940,
807,
1455,
682,
1966,
374,
1853,
262,
457,
202,
349,
808,
2809,
4405,
710,
1049,
2600,
975,
1739,
940,
1679,
374,
682,
2078
),
relativeRisk = c(NaN, NaN, 1.031, 1.013, 0.961, 0.981, 1.024, 1.011, 1.222,
0.977, 0.988, 0.984, 0.993, 0.949, 0.913, 1.004, 1.022, 1.065,
1.16, 0.963, 0.981, 0.963, 0.982, 0.969, 1.048, 1.009, 1.004,
1.013, 1.006, 0.999, 1.01, 0.977, 1.128, 0.986, 1.156, 0.971,
0.958, 0.971, 0.959, 0.98, 1.056, 1.14, 0.971, 1.001, 1.041,
0.995, 0.999, 0.996, 1.002, 0.972, 0.962, 1.099),
LIC = c(Inf, Inf, 1.013, 1.005, 0.987, 0.993, 1.007, 1.003, Inf, 0.997,
0.998, 0.998, 0.999, 0.996, 0.996, 0.997, 0.997, 0.999, Inf,
0.984, 0.992, 0.985, 0.993, 0.988, 0.992, 0.997, 0.998, 0.998,
0.999, 0.996, 0.996, 0.995, 0.998, 0.997, 0.999, 0.994, 0.992,
0.995, 0.994, 0.991, 0.997, 0.998, 0.987, 0.997, 0.991, 0.994,
0.993, 0.995, 0.994, 0.992, 0.99, 0.997)
),
row.names = c(NA,-52L),
class = "data.frame"
)
if (!all(setequal(names(m_previous), names(m_r))))
warning("Not all interestMeasures are tested! Missing data for: ", paste(setdiff(names(m_r), names(m_previous)), collapse = ", "))
expect_equivalent(m_previous, round(m_r[names(m_previous)], 3))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.