addBacktransforms.alldiffs | R Documentation |
alldiffs.object
.Given an alldiffs.object
, adds or recalculate its backtransforms
component.
The values of transform.power
, offset
, scale
and transform.function
from the backtransforms
component will be used, unless this component is NULL
when the values supplied in the call will be used.
## S3 method for class 'alldiffs'
addBacktransforms(alldiffs.obj,
transform.power = 1, offset = 0, scale = 1,
transform.function = "identity", ...)
alldiffs.obj |
An |
transform.power |
A |
offset |
A |
scale |
A |
transform.function |
A |
... |
Provision for passing arguments to functions called internally - not used at present. |
An alldiffs.object
with components
predictions
, vcov
, differences
, p.differences
,
sed
, LSD
and backtransforms
.
The backtransforms
component will have the attributes (i) LSDtype
,
LSDby
and LSDstatistic
added from the predictions
component and
(ii) transform.power
, offset
, scale
, and link
.
Chris Brien
asremlPlus-package
, as.alldiffs
, sort.alldiffs
,
subset.alldiffs
, print.alldiffs
,
renewClassify.alldiffs
, redoErrorIntervals.alldiffs
,
plotPredictions.data.frame
,
predictPlus.asreml
, predictPresent.asreml
##Subset WaterRunoff data to reduce time to execute
data(WaterRunoff.dat)
tmp <- subset(WaterRunoff.dat, Date == "05-18" & Benches != "3")
##Use asreml to get predictions and associated statistics
## Not run:
asreml.options(keep.order = TRUE) #required for asreml-R4 only
current.asr <- asreml(fixed = log.Turbidity ~ Benches + (Sources * (Type + Species)),
random = ~ Benches:MainPlots,
keep.order=TRUE, data= tmp)
current.asrt <- as.asrtests(current.asr, NULL, NULL)
TS.diffs <- predictPlus(classify = "Sources:Type",
asreml.obj = current.asr,
wald.tab = current.asrt$wald.tab,
present = c("Sources", "Type", "Species"))
## End(Not run)
##Use lmeTest and emmmeans to get predictions and associated statistics
if (requireNamespace("lmerTest", quietly = TRUE) &&
requireNamespace("emmeans", quietly = TRUE))
{
m1.lmer <- lmerTest::lmer(log.Turbidity ~ Benches + (Sources * (Type + Species)) +
(1|Benches:MainPlots),
data=tmp)
TS.emm <- emmeans::emmeans(m1.lmer, specs = ~ Sources:Species)
TS.preds <- summary(TS.emm)
den.df <- min(TS.preds$df, na.rm = TRUE)
## Modify TS.preds to be compatible with a predictions.frame
TS.preds <- as.predictions.frame(TS.preds, predictions = "emmean",
se = "SE", interval.type = "CI",
interval.names = c("lower.CL", "upper.CL"))
## Form an all.diffs object and check its validity
TS.vcov <- vcov(TS.emm)
TS.diffs <- allDifferences(predictions = TS.preds, classify = "Sources:Species",
vcov = TS.vcov, tdf = den.df)
validAlldiffs(TS.diffs)
}
## Recalculate the back-transforms of the predictions obtained using asreml or lmerTest
if (exists("TS.diffs"))
{
TS.diffs <- addBacktransforms.alldiffs(TS.diffs, transform.power = 0)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.