Nothing
#' @title Plot Prediction vs Target, Observed or Variable Values in D3 with r2d3 package.
#'
#' @description
#' Function \code{plotD3_prediction} plots predicted values observed or variable values in the model.
#'
#' @param object An object of class 'auditor_model_residual.
#' @param ... Other modelAudit or modelResiduals objects to be plotted together.
#' @param variable Name of variable to order residuals on a plot.
#' If \code{variable="_y_"}, the data is ordered by a vector of actual response (\code{y} parameter
#' passed to the \code{\link[DALEX]{explain}} function).
#' If \code{variable = "_y_hat_"} the data on the plot will be ordered by predicted response.
#' If \code{variable = NULL}, unordered observations are presented.
#' @param points Logical, indicates whenever observations should be added as points. By default it's TRUE.
#' @param smooth Logical, indicates whenever smoothed lines should be added. By default it's FALSE.
#' @param abline Logical, indicates whenever function y = x should be added. Works only
#' with \code{variable = NULL} which is a default option.
#' @param point_count Number of points to be plotted per model. Points will be chosen randomly. By default plot all of them.
#' @param single_plot Logical, indicates whenever single or facets should be plotted. By default it's TRUE.
#' @param scale_plot Logical, indicates whenever the plot should scale with height. By default it's FALSE.
#' @param background Logical, available only if single_plot = FALSE. Indicates whenever background plots should be plotted.
#' By default it's FALSE.
#'
#' @return a \code{r2d3} object
#'
#' @seealso \code{\link{plot_prediction}}
#'
#' @examples
#'
#' dragons <- DALEX::dragons[1:100, ]
#'
#' # fit a model
#' model_lm <- lm(life_length ~ ., data = dragons)
#'
#' lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)
#'
#' # validate a model with auditor
#' mr_lm <- model_residual(lm_audit)
#'
#' # plot results
#' plotD3_prediction(mr_lm, abline = TRUE)
#' plotD3_prediction(mr_lm, variable = "height", smooth = TRUE)
#'
#' library(randomForest)
#' model_rf <- randomForest(life_length~., data = dragons)
#' rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
#' mr_rf <- model_residual(rf_audit)
#' plotD3_prediction(mr_lm, mr_rf, variable = "weight", smooth = TRUE)
#'
#' @export
#' @rdname plotD3_prediction
plotD3_prediction <- function(object, ..., variable = '_y_', points = TRUE, smooth = FALSE,
abline = FALSE, point_count = NULL, single_plot = TRUE,
scale_plot = FALSE, background = FALSE){
if (points == FALSE & smooth == FALSE) stop("Plot points or smooth.")
n <- length(list(...)) + 1
check_object(object, type = "res")
df <- make_dataframe(object, ..., variable = variable, type = "res")
chart_title <- "Predicted"
y_title <- "Predicted values"
# set value for label of the X axis
if (is.null(variable)) {
x_title <- "Observations"
} else if (variable == "_y_") {
x_title <- "Target variable"
} else if (variable == "_y_hat_") {
x_title <- "Actual response"
chart_title <- paste0(chart_title, " vs ", x_title)
} else {
x_title <- as.character(df$`_variable_`[1])
chart_title <- paste0(chart_title, " vs ", x_title)
}
# take only columns needed
df <- df[, c('_y_hat_',"_val_","_label_")]
colnames(df) <- c("y","x","label")
mrl <- split(df, f = df$label)
model_names <- unlist(lapply(mrl, function(x) unique(x$label)))
point_max <- point_min <- smooth_max <- smooth_min <- NULL
point_data <- smooth_data <- NA
# prepare points data
if (points == TRUE) {
# find instance count and adjust point_count
m <- dim(mrl[[1]])[1]
if (is.null(point_count) || point_count > m) {
point_data <- mrl
} else {
point_data <- lapply(mrl, function(mr) {
mr <- mr[sample(m, point_count),]
mr
})
}
names(point_data) <- model_names
point_max <- max(sapply(mrl, function(x) max(x$y)))
point_min <- min(sapply(mrl, function(x) min(x$y)))
}
# prepare smooth data
if (smooth == TRUE) {
smooth_data <- lapply(mrl, function(mr) {
model <- mgcv::gam(y ~ s(x, bs = "cs"), data = mr)
vec <- data.frame(x = seq(min(mr$x), max(mr$x), length.out = 100))
p <- predict(model, vec)
df <- data.frame(x = vec$x, smooth = as.numeric(p))
dim(df$x) <- NULL
df
})
names(smooth_data) <- model_names
smooth_max <- max(sapply(smooth_data, function(x) max(x$smooth)))
smooth_min <- min(sapply(smooth_data, function(x) min(x$smooth)))
}
# find x and y scale
xmax <- max(mrl[[1]]$x)
xmin <- min(mrl[[1]]$x)
ymax <- max(point_max, smooth_max)
ymin <- min(point_min, smooth_min)
ticks_margin <- abs(ymin-ymax)*0.15;
temp <- jsonlite::toJSON(list(point_data, smooth_data))
options <- list(xmax = xmax, xmin = xmin,
ymax = ymax + ticks_margin, ymin = ymin - ticks_margin,
xTitle = x_title, n = n,
points = points, smooth = smooth, abline = abline,
peaks = FALSE, nlabel = FALSE,
scalePlot = scale_plot,
yTitle = y_title, chartTitle = chart_title)
if (single_plot == TRUE) {
r2d3::r2d3(data = temp, script = system.file("d3js/plotScatterSingle.js", package = "auditor"),
dependencies = system.file("d3js/colorsDrWhy.js", package = "auditor"),
css = system.file("d3js/themeDrWhy.css", package = "auditor"),
d3_version = 4,
options = options)
} else {
if (n==1) stop("Use single_plot instead.")
options['background'] <- background
r2d3::r2d3(data = temp, script = system.file("d3js/plotScatterMany.js", package = "auditor"),
dependencies = list(
system.file("d3js/colorsDrWhy.js", package = "auditor"),
system.file("d3js/hackHead.js", package = "auditor")
),
css = system.file("d3js/themeDrWhy.css", package = "auditor"),
d3_version = 4,
options = options)
}
}
#' @rdname plotD3_prediction
#' @export
plotD3Prediction <- function(object, ..., variable = NULL, points = TRUE, smooth = FALSE,
abline = FALSE,
point_count = NULL, single_plot = TRUE, scale_plot = FALSE,
background = FALSE) {
warning("Please note that 'plotD3Prediction()' is now deprecated, it is better to use 'plotD3_prediction()' instead.")
plotD3_prediction(object, ..., variable, points, smooth,
point_count, single_plot, scale_plot,
background)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.