Nothing
#' @title Area under precision-recall curve
#'
#' @description Area under precision-recall (AUPRC) curve.
#'
#'
#' @param object An object of class \code{explainer} created with function
#' \code{\link[DALEX]{explain}} from the DALEX package.
#' @param data New data that will be used to calculate the score.
#' Pass \code{NULL} if you want to use \code{data} from \code{object}.
#' @param y New y parameter will be used to calculate score.
#' @param ... Other arguments dependent on the type of score.
#'
#' @return An object of class \code{auditor_score}.
#'
#' @examples
#' data(titanic_imputed, package = "DALEX")
#'
#' # fit a model
#' model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed)
#'
#' # create an explainer
#' glm_audit <- audit(model_glm,
#' data = titanic_imputed,
#' y = titanic_imputed$survived)
#'
#' # calculate score
#' score_auprc(glm_audit)
#'
#'
#' @export
score_auprc <- function(object, data = NULL, y = NULL, ...) {
if(!("explainer" %in% class(object))) stop("The function requires an object created with explain() function from the DALEX package.")
# inject new data to the explainer
if (!is.null(data)) {
object$data <- data
object$y <- y
object$y_hat <- object$predict_function(object$model, data)
}
object <- model_evaluation(object)
pred <- data.frame(y_hat = object$`_y_hat_`,
y = object$`_y_`)
pred_sorted <- pred[order(pred$y_hat, decreasing = TRUE), ]
roc_y <- factor(pred_sorted$y)
positive_label <- levels(roc_y)[2]
negative_label <- levels(roc_y)[1]
positive_num <- sum(pred_sorted$y == positive_label)
tp <- cumsum(pred_sorted$y == positive_label)
fp <- cumsum(pred_sorted$y == negative_label)
# remove duplicates
duplicates <- rev(duplicated(rev(pred_sorted$y_hat)))
tp <- c(0, tp[!duplicates])
fp <- c(0, fp[!duplicates])
fn <- nrow(pred_sorted) - tp
precision <- tp / (tp + fp)
recall <- tp / positive_num
xroc <- recall
yroc <- precision
auprc <- sum( 0.5* (xroc[2:length(xroc)]-xroc[1:length(xroc)-1])* (yroc[2:length(xroc)] +yroc[1:length(xroc)-1]), na.rm = TRUE )
results <- list(
name = "auprc",
score = auprc
)
class(results) <- "auditor_score"
return(results)
}
#' @title One Minus area under precision-recall curve
#'
#' @description One Minus Area under precision-recall (AUPRC) curve.
#'
#' @param object An object of class \code{explainer} created with function
#' \code{\link[DALEX]{explain}} from the DALEX package.
#' @param data New data that will be used to calculate the score.
#' Pass \code{NULL} if you want to use \code{data} from \code{object}.
#' @param y New y parameter will be used to calculate score.
#' @param ... Other arguments dependent on the type of score.
#'
#' @return An object of class \code{auditor_score}.
#'
#' @examples
#' data(titanic_imputed, package = "DALEX")
#'
#' # fit a model
#' model_glm <- glm(survived ~ ., family = binomial, data = titanic_imputed)
#'
#' # create an explainer
#' glm_audit <- audit(model_glm,
#' data = titanic_imputed,
#' y = titanic_imputed$survived)
#'
#' # calculate score
#' score_one_minus_auprc(glm_audit)
#'
#'
#' @export
score_one_minus_auprc <- function(object, data = NULL, y = NULL, ...) {
if(!("explainer" %in% class(object))) stop("The function requires an object created with explain() function from the DALEX package.")
# inject new data to the explainer
if (!is.null(data)) object$data <- data
auprc <- score_auprc(object, data, y, ...)$score
results <- list(
name = "one_minus_auprc",
score = 1 - auprc
)
class(results) <- "auditor_score"
return(results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.