Nothing
#' @importFrom methods show
#' @importFrom stats cor filter lm predict quantile sd
#' @importFrom utils tail timestamp
#' @importFrom alphavantager av_api_key av_get
#' @importFrom dplyr between intersect mutate
#' @importFrom ggplot2 aes element_text geom_hline geom_line ggplot ggtitle theme ylim
#' @importFrom lubridate hour month hours force_tz force_tzs
#' @importFrom plotly add_histogram add_trace ggplotly plot_ly layout
#' @importFrom dplyr "%>%"
#' @importFrom tibble tibble
#For LaTek to work run in console:
#Sys.setenv(PATH = paste(Sys.getenv("PATH"), "C:/Users/edmon/AppData/Local/Programs/MiKTeX/miktex/bin/x64", sep=.Platform$path.sep))
# R CMD Rd2pdf avfintools
#av_api_key("YOUR_AV_KEY_HERE")
load("data/SPYdaily.RData")
load("data/SPY15.RData")
load("data/GMEdaily.RData")
#' This is data to be included in my package
#'
#' @source Alpha Vantager API
#' @references \url{https://www.alphavantage.co/documentation/}
"GMEdaily"
#' This is data to be included in my package
#'
#' @source Alpha Vantager API
#' @references \url{https://www.alphavantage.co/documentation/}
"SPYdaily"
#' This is data to be included in my package
#'
#' @source Alpha Vantager API
#' @references \url{https://www.alphavantage.co/documentation/}
"SPY15"
#Get Data from Stocks
#' After-hour and Pre-market Returns
#'
#' Show returns between the close of the last trading day and the open of the current trading day
#' @param df Dataframe with daily data
#' @return A vector in dataframe format of combined after-hour, overnight, and pre-market returns in percentage
#' @examples
#' idret(SPYdaily)
#' @export
idret <- function(df){
counter <- dim(df)[1]
blank <- data.frame(rep(0,dim(df)[1]))
i <- 0
while (counter != 0)
{
i = i + 1
if(i > 1){
l = i - 1
blank[i,] = 100 * (df$open[i] - df$close[l])/(df$close[l])
}
counter = counter - 1
}
colnames(blank) <- 'idreturns'
return(blank)
}
#' Total return to multiplicative return
#'
#' Multiplicative returns are always comparative to the earliest return
#' @param df Dataframe with daily data
#' @return A vector in dataframe format cumulative multiplicative returns
#' @examples
#' trtomr(SPYdaily)
#' @export
trtomr <- function(df) {
counter <- dim(df)[1]
blank <- data.frame(rep(0,dim(df)[1]))
i <- 0
st <- 1
while (counter != 0)
{
i = i + 1
st = st * (1 + (df$tot_ret[i]/100))
blank[i,] = (st - 1) * 100
counter = counter - 1
}
colnames(blank) <- 'mrreturns'
return(blank)
}
#' Total return to cumulative return
#'
#' The cumulative percentage is the addition of subsequent total daily returns.
#' @param list_of_returns Vector in dataframe showing returns
#' @return A vector in dataframe format cumulative percentage returns
#' @examples
#' ret_to_cr(SPYdaily$returns)
#' @export
ret_to_cr <- function(list_of_returns) {
blank <- data.frame(rep(0,length(list_of_returns)))
counter = length(list_of_returns)
i = 0
colnames(blank) <- 'cum_ret'
while (counter != 0) {
i = i + 1
if(i== 1){
blank[i,] <- as.numeric(list_of_returns[i])
}
if(i>1) {
l = i - 1
blank[i,] <- as.numeric(list_of_returns[i] + blank[l,])
}
counter = counter - 1
}
return(blank)
}
#' Get Stock Data at the Daily Level
#'
#' Daily, as in the summary statistics for the daily movement
#' @param ticker The ticker symbol as a string
#' @return A data frame with daily data such as the high, low, open, close, and associated returns. Available in the global environment.
#' @examples
#' \dontrun{
#' getdaily("SPY")
#' }
#' @export
getdaily <- function (ticker) {
retdata <- av_get(symbol = ticker, av_fun = 'TIME_SERIES_DAILY', outputsize = 'full')
return(addreturns(retdata))
}
#' Get Stock Data at the 15 minute level localized to current time zone
#'
#' Summary statistics for the movements on the 15 minute level
#' @param ticker The ticker symbol as a string
#' @param truncated Option to limit output to hours closer to market open hours. Default is true.
#' @return A data frame with daily data such as the high, low, open, close, and associated returns. Available in the global environment.
#' Default is truncated to show data more relevant to active trading hours. Adjusted to local time zone.
#' @examples
#' \dontrun{
#' get15("WTI")
#' get15("SPY", truncated = FALSE)
#' }
#' @export
get15 <- function (ticker, truncated = TRUE) {
retdata <- av_get(symbol = ticker, av_fun = 'TIME_SERIES_INTRADAY', outputsize = 'full', interval = '15min')
retdata <- addreturns(retdata)
retdata <- retdata %>% dplyr::mutate(timestamp = force_tzs(timestamp, tzones = c("America/New_York"), tzone_out = Sys.timezone()))
if (truncated == TRUE) {
retdata <- retdata[between(hour(retdata$timestamp), 6, 13),]
return(addreturns(retdata))
} else {
return(addreturns(retdata))
}
}
#' Get Stock Data at the Weekly level
#'
#' Summary statistics for the stock movements on the weekly
#' @param ticker The ticker symbol as a string
#' @return A data frame with daily data such as the high, low, open, close, and associated returns. Available in the global environment.
#' @examples
#' \dontrun{
#' getweekly("WTI")
#' }
#' @export
getweekly <- function(ticker){
retdata <- av_get(symbol = ticker, av_fun = 'TIME_SERIES_Weekly')
retdata <- addreturns(retdata)
return(addreturns(retdata))
}
#' Get Stock Data at the hourly level localized to current time zone
#'
#' Summary statistics for the movements on the hourly level
#' @param ticker The ticker symbol as a string
#' @param truncated Option to limit output to hours closer to market open hours. Default is true.
#' @return A data frame with daily data such as the high, low, open, close, and associated returns. Available in the global environment.
#' Default is truncated to show data more relevant to active trading hours. Adjusted to local time zone.
#' @examples
#' \dontrun{
#' get60("WTI")
#' get60("SPY", truncated = FALSE)
#' }
#' @export
get60 <- function (ticker, truncated = TRUE) {
retdata <- av_get(symbol = ticker, av_fun = 'TIME_SERIES_INTRADAY', outputsize = 'full', interval = '60min')
retdata <- addreturns(retdata)
retdata <- retdata %>% dplyr::mutate(timestamp = force_tzs(timestamp, tzones = c("America/New_York"), tzone_out = Sys.timezone()))
if (truncated == TRUE) {
retdata <- retdata[between(hour(retdata$timestamp), 6, 13),]
return(addreturns(retdata))
} else {
return(addreturns(retdata))
}
}
#' Get Stock Data at the 5 minute level localized to current time zone
#'
#' Summary statistics for the movements on the 5 minute level
#' @param ticker The ticker symbol as a string
#' @param truncated Option to limit output to hours closer to market open hours. Default is true.
#' @return A data frame with daily data such as the high, low, open, close, and associated returns. Available in the global environment.
#' Default is truncated to show data more relevant to active trading hours. Adjusted to local time zone.
#' @examples
#' \dontrun{
#' get5("WTI")
#' get5("SPY", truncated = FALSE)
#' }
#' @export
get5 <- function (ticker, truncated = TRUE) {
retdata <- av_get(symbol = ticker, av_fun = 'TIME_SERIES_INTRADAY', outputsize = 'full', interval = '5min')
retdata <- addreturns(retdata)
retdata <- retdata %>% dplyr::mutate(timestamp = force_tzs(timestamp, tzones = c("America/New_York"), tzone_out = Sys.timezone()))
if (truncated == TRUE) {
retdata <- retdata[between(hour(retdata$timestamp), 6, 13),]
return(addreturns(retdata))
} else {
return(addreturns(retdata))
}
}
#Get Crypto
#' Get Cryptocurrency Data at the hourly level localized to current time zone
#'
#' Summary statistics for the movements on the hourly level
#' @param coin_name The ticker symbol for the concurrency as a string
#' @return A data frame with daily data such as the high, low, open, close, and associated returns. Available in the global environment.
#' Adjusted to local time zone.
#' @examples
#' \dontrun{
#' crypto60("BTC")
#' }
#' @export
crypto60 <- function(coin_name) {
retdata <- av_get(symbol = coin_name, av_fun = "CRYPTO_INTRADAY", interval = "60min", outputsize = "full", market = "USD")
retdata <- addreturns(retdata)
retdata <- retdata %>% dplyr::mutate(timestamp = force_tzs(timestamp, tzones = c("America/New_York"), tzone_out = Sys.timezone()))
return(addreturns(retdata))
}
#' Get Cryptocurrency Data at the Daily Level
#'
#' Daily, as in the summary statistics for the daily movement
#' @param coin_name The ticker symbol for the concurrency as a string
#' @return A data frame with daily data such as the high, low, open, close, and associated returns. Available in the global environment.
#' @examples
#' \dontrun{
#' cryptodaily("WTI")
#' }
#' @export
cryptodaily <- function (coin_name) {
retdata <- av_get(symbol = coin_name, av_fun = 'DIGITAL_CURRENCY_DAILY', market = 'USD')
return(addreturns(retdata))
}
#Daily data Analytics
#' Compare returns visually between two securities
#'
#' Prints a plotly graph comparing returns, cumulative nominal returns, and cumulative multiplicative returns
#' @param a The first dataframe filled with data from the function getdaily()
#' @param b The second dataframe filled with data from the function getdaily()
#' @param a_name Character string name for first dataframe
#' @param b_name Character string name for second dataframe
#' @return Returns plotly graph comparing returns, cumulative nominal returns, and cumulative multiplicative returns. Click graph name to un-toggle for better visibility.
#' @examples
#' compare_returns(GMEdaily, SPYdaily, "GME", "SPY")
#' @export
compare_returns <- function (a, b, a_name, b_name){
comb <- merge(a, b, by='timestamp')
print(names(comb))
f <- list(
family = "Korea1",
size = 18,
color = "#7f7f7f"
)
x1 <- list(
title = "Dates",
titlefont = f
)
y1 <- list(
title = "Returns in %s",
titlefont = f
)
print(comb)
fig2 <- plot_ly(comb, type = 'scatter', mode = 'lines')%>%
add_trace(y = ~mrreturns.x, x = ~timestamp, name = paste(a_name,'Cum. Mult. Returns'), fill = 'tozeroy', mode = 'lines', fillcolor ='#e6e2cd') %>%
add_trace(y = ~mrreturns.y, x = ~timestamp, name = paste(b_name,'Cum. Mult. Returns'), fill = 'tozeroy', mode = 'lines', fillcolor ='#a3ffb4') %>%
add_trace(y = ~cum_ret.x, x = ~timestamp, name = paste(a_name,'Cum. Nom. Returns'), fill = 'tozeroy', mode = 'lines', fillcolor ='#C4FBF8') %>%
add_trace(y = ~cum_ret.y, x = ~timestamp, name = paste(b_name,'Cum. Nom. Returns'), fill = 'tonexty', mode = 'lines', fillcolor = '#F7C5D0') %>%
add_trace(y = ~tot_ret.x, x = ~timestamp, name = paste(a_name, 'Returns'), fill ='none') %>%
add_trace(y = ~tot_ret.y, x = ~timestamp, name = paste(b_name, 'Returns'), fill ='none')
fig2 <- fig2 %>% layout(title = paste(a_name, "vs.", b_name, "Returns"), xaxis = x1, yaxis = y1)
return(fig2)
}
#' Frequency plot of Subsequent Returns After a Percentage Input
#'
#' Returns a frequency plot drawn from historical data based on a percentage
#' change that occurred
#' @param dataset Dataframe with daily data
#' @param price_input the price movement, in percent, of the most recent
#' (or whatever you are interested in) trading day
#' @param hideprints if set to FALSE, returns summary statistics
#' @return percentage frequency plot of the following day based on historical data
#' @examples
#' thedayafter(SPYdaily, -1.35)
#' @export
thedayafter <- function(dataset, price_input, hideprints = TRUE){
stdev <- sd(dataset$returns)
meme <- mean(dataset$returns)
nstd <- (price_input - meme)/stdev
lb <- stdev*(nstd-.5)
ub <- stdev*(nstd+.5)
mb <- month(Sys.Date()) - 1
ma <- month(Sys.Date()) + 2
dfil <- intersect(which(month(dataset$timestamp) >= mb), which(month(dataset$timestamp) <= ma))
dind <- intersect(which(dataset$returns> lb),which(dataset$returns< ub)) + 1
ndind <- intersect(dfil, dind)
ndf<- tibble(dataset$returns[ndind], dataset$idreturns[ndind])
colnames(ndf) <- c('returns','idreturns')
if(hideprints == FALSE)
{
print(summary(ndf))
print(paste("Mean Return:", as.character(mean(ndf$returns))))
print((paste("Mean AH/PM Return:", as.character(mean(ndf$idreturns)))))
print((paste("Mean Total Next Day Return:", as.character((mean(ndf$idreturns)+mean(ndf$returns))))))
print(paste(as.character(round((sum(ndf$returns>0)/length(ndf$returns)) * 100, 2)), " % of the time, next trading day returns are positive"))
print(paste(as.character(round((sum(ndf$idreturns>0)/length(ndf$idreturns)) * 100, 2)), " % of the time, after-hours of this day/ pre-market of next day are positive"))
}
tda_fig = plot_ly(ndf, type = 'histogram', x=~returns, histnorm = 'probability', name = 'Trading Day') %>% add_histogram(x = ~idreturns, name = "AH + PM") %>% layout(title = paste('One Day Returns after', as.character(price_input), '% change'))
return(tda_fig)
}
#' Frequency plot of Range, as well as maximum Upward and Downward Movement
#'
#' a plot_ly plot
#' @param df Dataframe with daily data
#' @param tick_name The ticker so the graph is correct
#' @param cumulative Default is FALSE, turn to TRUE for a cumulative plot.
#' @param hideprints if set to FALSE, shows summary statistics
#' @return Frequency plot where you can find intraday volatility (range), maximum upside (Upward Movement), maximum downside (Downward Movement) on a cumulative percentile basis
#' @examples
#' volatility_freq (SPYdaily, "SPY")
#' volatility_freq (SPYdaily, "SPY", cumulative = TRUE)
#' volatility_freq (SPYdaily, "SPY", hideprints = TRUE)
#' @export
volatility_freq <- function(df, tick_name, cumulative = FALSE, hideprints = FALSE) {
high <- NULL
low <- NULL
hilow <- NULL
df <- df %>% dplyr::mutate(hilow = high - low)
df <- df %>% dplyr::mutate(hilowp = hilow/open * 100)
df <- df %>% dplyr::mutate(openhi = (high - open)/open * 100)
df <- df %>% dplyr::mutate(openlow = (low - open)/open * 100)
if(hideprints == FALSE) {
print(summary(df$hilowp))
print(summary(df$openhi))
print(summary(df$openlow))
print(paste(tick_name, 'goes up',as.character((100 *sum(df$returns > 0))/dim(df)[1]), '% of the time from market open to close'))
}
if(cumulative == TRUE) {
df <- df %>% dplyr::mutate(openlow = (low - open)/open * 100 * -1)
return(plot_ly(df, x=~hilowp, type= 'histogram', cumulative = list(enabled = TRUE), histnorm = 'probability', name = 'Intraday Volatility') %>% add_histogram(x = ~openhi, name = 'Upward Movement') %>% add_histogram(x = ~openlow, name = 'Downward Movement') %>% layout(title = paste(tick_name, 'Intraday Movement Percentiles'), xaxis = list(title = 'Return in %s')))
}
plot_ly(df, x=~hilowp, type= 'histogram', histnorm = 'probability', name = 'Intraday Volatility') %>%
add_histogram(x = ~openhi, name = 'Max Upside') %>%
add_histogram(x = ~openlow, name = 'Max Downside') %>%
layout(title = paste('Return Profiles for', tick_name), xaxis = list(title = 'Return in %s'))
}
#' Adds various returns as well as additional statistics.
#'
#' Adds percentage returns, interday returns, total returns, cumulative returns, multiplicative returns, range, and dollar returns to the default dataframe pulled from alphavantager
#' @param df Dataframe pulled from alphavantager
#' @return A more detailed dataframe with additional return metrics and summary statistics.
#' @examples
#' addreturns(SPYdaily)
#' @export
addreturns <- function (df) {
returns <- NULL
idreturns <- NULL
tot_ret <- NULL
high <- NULL
low <- NULL
df <- df %>% mutate(returns = 100* (close - open)/(open))
df <- df %>% dplyr::mutate(idret(df))
df <- df %>% dplyr::mutate(tot_ret = returns + idreturns)
df <- df %>% dplyr::mutate(ret_to_cr(tot_ret))
df <- df %>% dplyr::mutate(trtomr(df))
df <- df %>% dplyr::mutate(range = high - low)
df <- df %>% dplyr::mutate(d_ret = close - open)
return(df)
}
#' Projects future prices based on regression
#'
#' Works with multiple time intervals. Do not oversupply with data, regression is expensive.
#' @param df Dataframe with price data. The opening price is used for projection purposes, works for all security types
#' @param tickername The ticker or the security you are putting in.
#' @return What comes out of this function
#' @examples
#'
#' project_price(tail(SPYdaily,200), "SPY")
#' project_price(SPY15, "SPY")
#' @export
project_price <- function(df, tickername) {
hs <- NULL
df <- df %>% mutate(hs = as.numeric(timestamp - df$timestamp[1], units = 'hours')) %>%
mutate(hs2 = hs^2) %>%
mutate(hs3 = hs^3)
ln1 <- lm(formula = open ~ hs, df)
ln2 <- lm(formula = open ~ hs + hs2, df)
ln3 <- lm(formula = open ~ hs + hs2 + hs3, df)
ndf <- tibble((min(df$hs):(max(df$hs + 200 ))))
colnames(ndf) <- 'hs'
ndf <- ndf %>%
mutate(hs2 = hs^2) %>%
mutate(hs3 = hs^3)
ndf <- ndf %>% mutate(btime = min(df$timestamp) + hours(hs))
pr1 <- as.numeric(predict(ln1, ndf))
pr2 <- as.numeric(predict(ln2, ndf))
pr3 <- as.numeric(predict(ln3, ndf))
pr4 <- (pr1 + pr2 + pr3)/3
plot_ly(df, type = 'scatter', mode = 'lines') %>%
add_trace(x = ~timestamp, y = ~open, name = 'Open') %>%
add_trace(x = ndf$btime, y = pr1, name = 'Linear') %>%
add_trace(x = ndf$btime, y = pr2, name = "Quadratic") %>%
add_trace(x = ndf$btime, y = pr3, name = 'Cubic') %>%
add_trace(x = ndf$btime, y = pr4, name = 'Average')%>%
layout(title = paste(tickername, 'Projections'), yaxis = list(title = 'Price in Dollars'), xaxis = list(title = 'Dates'))
}
#' Calculate the correlation between a column shared within two dataframes.
#'
#' Two dataframes from one of the "get" functions recommended, but works with any dataframe that shares columns as well as column lengths.
#' @param a First dataframe
#' @param b Second dataframe
#' @param sdata A string of the column name to compare
#' @return The correlation as a single numeric.
#' @examples
#' findcor(SPYdaily, GMEdaily, "returns")
#' @export
findcor<- function (a, b, sdata) {
ndf = merge(a, b, by = 'timestamp')
cors <- cor(eval(parse(text = paste0('ndf$', sdata, '.x'))),eval(parse(text = paste0('ndf$', sdata, '.y' ))))
return(cors)
}
#' Frequency plot based on Absolute percentage movements
#'
#' Shows the cumulative probabilities of each percentage movement
#' @param df Dataframe from the "get"
#' @param name_in_string Name of security associated with dataframe
#' @return A plot_ly graph showing the frequency of absolute returns.
#' "All Data" - no data omitted
#' "Cumulative Probability" Cumulative frequency graph of returns
#' "No Extremes" filter out skewed data
#' @examples
#' showidreturns(SPYdaily, "SPY")
#' @export
showidreturns <- function(df, name_in_string) {
ub <- as.numeric(quantile(df$idreturns, probs = .95) * 3)
lb <- as.numeric(quantile(df$idreturns, probs = .05) * 3)
dfadd <- tibble(ifelse(df$idreturns < ub & df$idreturns >lb , df$idreturns, 0))
colnames(dfadd) = 'idreturnsne'
df <- df %>% dplyr::mutate(dfadd)
# updatemenus component
updatemenus <- list(
list(
active = -1,
type= 'buttons',
buttons = list(
list(
label = "All Data",
method = "update",
args = list(list(visible = c(FALSE, TRUE, FALSE)),
list(title = paste(name_in_string, "Interday Returns")))),
list(
label = "Cumulative Probability",
method = "update",
args = list(list(visible = c(TRUE, FALSE, FALSE)),
list(title = paste(name_in_string, "Interday Returns")))),
list(
label = "No Extremes",
method = "update",
args = list(list(visible = c(FALSE, FALSE, TRUE)),
list(title = paste(name_in_string, "Interday Returns"))))
))
)
fig <- df %>% plot_ly(type = 'histogram', histnorm = 'probability') %>%
add_histogram(x = df$idreturns, name="All Returns")%>%
add_histogram(x = df$idreturnsne , name="No Extremes")%>%
add_histogram(x = df$idreturns, cumulative = list(enabled = TRUE) ,name = "Cumulative Probability")
fig <- fig %>% layout(showlegend=FALSE,
xaxis=list(title="Returns in %"),
yaxis=list(title="Decimal Probability"),
updatemenus=updatemenus)
fig
}
#' Negative Volume Index
#'
#' Calculates the negative volume index, uses closing price of the time period
#' @param df Dataframe with price data.
#' @return Returns a 1 x # of columns in df dataframe
#' @examples
#' nvi(tail(SPYdaily, 200))
#' @export
nvi <- function(df) {
blank <- data.frame(rep(0,dim(df)[1]))
counter = dim(df)[1]
i = 0
colnames(blank) <- 'nvi'
while (counter != 0) {
i = i + 1
counter = counter - 1
j = i - 1
if (i == 1) {
blank[i,] = 1
next
}
if(df$volume[i] < df$volume[j]){
l <- blank[j,]
blank[i,] <- l + l * ((df$close[i] -df$close[j])/df$close[j])
}
else {
blank[i,] = blank[j,]
}
}
return(blank * df$open[1])
}
#' Positive Volume Index
#'
#' Calculates the positive volume index, uses closing price of the time period
#' @param df Dataframe with price data
#' @return Returns a 1 x # of columns in df dataframe
#' @examples
#' pvi(tail(SPYdaily, 200))
#' @export
pvi <- function(df) {
blank <- data.frame(rep(0,dim(df)[1]))
counter = dim(df)[1]
i = 0
colnames(blank) <- 'pvi'
while (counter != 0) {
i = i + 1
counter = counter - 1
j = i - 1
if (i == 1) {
blank[i,] = 1
next
}
if(df$volume[i] > df$volume[j]){
l <- blank[j,]
blank[i,] <- l + l * ((df$close[i] -df$close[j])/df$close[j])
}
else {
blank[i,] = blank[j,]
}
}
return(blank * df$open[1])
}
#' Relative percentage from the Maximum Value
#'
#' Returns the percent of the maximum volume movement from data
#' @param df Dataframe with price data.
#' @return Returns a 1 x # of columns in df dataframe in percentage
#' @examples
#' volp(tail(SPYdaily, 200))
#' @export
volp <- function(df) {
blank <- data.frame(rep(0,dim(df)[1]))
colnames(blank) <- 'volp'
blank = df$volume * 100 / max(df$volume)
return(blank)
}
#' Graph of Volume Indicators
#'
#' Follows Open, PVI, NVI, and %Max Volatility
#' @param df Dataframe with price data.
#' @param name A character string to add to the title "____ Volume Analysis"
#' @return Returns plot_ly graph with PVI, NVI, Open and % Max Volatility
#' @examples
#' volume_analysis(SPY15, "SPY")
#' @export
volume_analysis <- function(df, name) {
df <- df %>% dplyr::mutate(nvi(df)) %>% dplyr::mutate(pvi((df))) %>% dplyr::mutate(volp(df))
plot_ly(df, type='scatter', mode = 'lines') %>%
add_trace(x =~timestamp, y =~open, name = 'Open') %>%
add_trace(x =~timestamp, y =~pvi, name = 'PVI') %>%
add_trace(x =~timestamp, y =~nvi, name = 'NVI') %>%
add_trace(x =~timestamp, y =~volp, name = '% Max Vol.') %>%
layout(title = paste(name, 'Volatility Analysis'))
}
#' Streak
#'
#' Counts the number of days the open price has moved consecutively
#' Negative and positive streaks are represented by their sign
#' @param df Dataframe with price data.
#' @return Returns a 1 x # of columns in df dataframe
#' @examples
#' streak(tail(SPYdaily, 200))
#' @export
streak = function (df) { # streak will return a positive or negative number that shows the number of times it has moved in the same direction, with positive numbers representing an upward movement and downward movements symbolized by a negative number
counter <- dim(df)[1]
blank <- data.frame(rep(0,dim(df)[1]))
i <- 1
while (counter != 0 )
{
i = i + 1
n = i + 1
b = i - 1
if ( n > dim(df)[1]) {
break
}
if(df$open[i] < df$open [n]){
blank[i,] = blank[b,] + 1
}
if(df$open[i] > df$open [n]){
blank[i,] = blank[b,] - 1
}
#If absolutes value of current value is lower than the previous value, than we should reset to 0
if(abs(blank[i,]) < abs(blank[b,])) {
blank[i,] = 0
}
else {
next
}
counter = counter - 1
}
colnames(blank) <- 'streak'
return(blank)
}
#' Streak (Multiple Variables)
#'
#' Counts the number of days the open price has moved consecutively
#' Negative and positive streaks are represented by their sign; only works with various types of returns or mutated vector created by diff()
#' @param df Dataframe with price data.
#' @param var String of column name you wish to see streak in
#' @return Returns a 1 x # of columns in df dataframe
#' @examples
#' streak_var(tail(SPYdaily,200), "tot_ret")
#' @export
streak_var = function (df, var) { #streak2 lets you choose which variable to count the streak of
counter <- dim(df)[1]
blank <- data.frame(rep(0,dim(df)[1]))
i <- 1
counted = eval(parse(text = paste0('df$', var)))
while (counter != 0 )
{
i = i + 1
n = i + 1
b = i - 1
if ( n > dim(df)[1]) {
break
}
if(counted[i] < counted [n]){
blank[i,] = blank[b,] + 1
}
if(counted[i] > counted [n]){
blank[i,] = blank[b,] - 1
}
#If absolutes value of current value is lower than the previous value, than we should reset to 0
if(abs(blank[i,]) < abs(blank[b,])) {
blank[i,] = 0
}
else {
next
}
counter = counter - 1
}
colnames(blank) <- 'streak'
return(blank)
}
#' Show Fibonacci bands
#'
#' Displays Fibonacci bands
#' @param df Dataframe with price data, works with various intervals
#' @param showgraph Whether or not you want the function to pop out the visual
#' @param title A character string for the Title of your graph
#' @param hideprints if set to FALSE, prints out the support and resistance levels
#' @return Returns graph with various levels as well as a vector
#' @examples
#' fibs(tail(SPYdaily, 200))
#' SPYdailyfibs <- fibs(tail(SPYdaily, 200))
#' fibs(SPY15)
#' @export
fibs = function(df, showgraph = TRUE, title = NULL, hideprints = FALSE) {
fib = c(.03, .05, .08, .13, .21, .34)
l = length(fib)
m = 1
lines1 = rep(0, l)
while (l > 0) {
line = quantile(df$open,fib[m])
lines1[m] = line
m = m + 1
l = l - 1
}
lines2 = rep(0, l)
ifib = 1 - fib
l = length(fib)
m = 1
while (l > 0) {
line = quantile(df$open,ifib[m])
lines2[m] = line
m = m + 1
l = l - 1
}
avgret = mean(df$tot_ret)
lines3 = df$close[dim(df)][1] + avgret * fib * df$close[dim(df)][1] *100
lines = c(lines1, lines2, lines3)
lines = sort(lines)
linesl = round((lines - 0.15)*10)/10
linesh = round((lines + 0.15)*10)/10
len = length(lines)
if (hideprints == FALSE) {
print('These are the ranges where a reversion may happen')
counter = 1
while(counter < len) {
print(paste(as.character(linesl[counter]), 'to', as.character(linesh[counter])))
counter = counter + 1
}
}
if(showgraph == TRUE) {
fig = ggplot(df, aes(timestamp, open)) + geom_line() + ylim(min(df$low),max(df$high))
if(is.null(title) == FALSE) {
fig = fig + ggtitle(title) + theme(plot.title = element_text(hjust = 0.5))
}
fig = ggplotly(fig + geom_hline(yintercept = lines))
if (hideprints == FALSE) {
print('These are the potential prices for resistance and support')
}
show(fig)
return(lines)
}
if(showgraph == FALSE) {
return(lines)
}
} # Works on 15 minute level data
#' Candlestick chart
#'
#' Returns plot_ly candlestick chart
#' @param df Dataframe with price data.
#' @return A candlestick chart
#' @examples
#' candles(SPYdaily)
#' @export
candles = function(df) { #df name to be typed in string
fig = plot_ly(df, x = ~timestamp, type="candlestick",
open = ~open, close = ~close,
high = ~high, low = ~low, name = deparse(substitute(df))) %>% plotly::layout(title = "Candlestick Chart",
xaxis = list(rangeslider = list(visible = F)))
return(fig)
}
#' Relative Strength Index
#'
#' Returns the Relative Strength Index with adjustable periods
#' @param df Dataframe with price data
#' @param periods Calculation Period
#' @param current If one wants to input the latest price point before data updates, RSI uses the percentage return at the end of the market hours
#' @param pricechange Input in percentage
#' @param hideprints If TRUE, hides printouts from the current message
#' @return Returns a vector of RSI calculations in dataframe format. If current = TRUE, returns the most recent RSI.
#' @examples
#' RSI(SPY15, 14)
#' RSI(tail(SPYdaily,200), 14, current = TRUE, pricechange = 1.3)
#' @export
RSI = function(df, periods, current = FALSE, pricechange = NULL, hideprints = TRUE) {
rets = df$tot_ret
rs1 = c()
poslist = c()
neglist = c()
for (i in 1:length(rets)) {
if(rets[i] > 0 ) {
poslist = append(poslist, rets[i])
neglist = append(neglist, 0)
}
if(rets[i] < 0){
neglist = append(neglist, rets[i])
poslist = append(poslist, 0) }
}
neglist = abs(neglist)
for(i in 1:length(rets)) {
if (periods < i) {
avggain = mean(poslist[i - periods: i])
avgloss = mean(neglist[i - periods: i])
rs1[i] = 100 - 100/(1+(avggain/avgloss))
}
else {
rs1[i] = 0
}
}
avggainl = c()
avglossl = c()
for(i in 1:length(rets)) {
if (periods < i) {
avggain = mean(poslist[i - periods: i])
avggainl = append(avggainl, avggain)
avgloss = abs(mean(neglist[i - periods: i]))
avglossl = append(avglossl, avgloss)
rs1[i] = 100 - 100/(1+(avggain/avgloss))
}
else {
avggain = mean(poslist[1:i])
avggainl = append(avggainl, avggain)
avgloss = mean(neglist[1:i])
avglossl = append(avglossl, avgloss)
rs1[i] = 0
}
}
rs2 = c()
for(i in 1:length(rets)) {
if (periods < i) {
rs2[i] = 100 - (100/(1+((avggainl[i-1] * (periods - 1))+poslist[i])/(avglossl[i-1] * (periods - 1)+neglist[i])))
}
else {
rs2[i] = 0
}
}
if (current == TRUE) {
if (pricechange > 0 ){
rscurrent = 100 - (100/(1+((tail(avggainl, 1) * (periods - 1))+pricechange)/(tail(avglossl, 1) * (periods - 1)+0)))
}
if (pricechange < 0 ){
rscurrent = 100 - (100/(1+((tail(avggainl, 1) * (periods - 1))+0)/(tail(avglossl, 1) * (periods - 1)+abs(pricechange))))
}
else {
rscurrent = 100 - (100/(1+((tail(avggainl, 1) * (periods - 1))+0)/(tail(avglossl, 1) * (periods - 1)+0)))
}
if (hideprints == FALSE) {
print(paste("The current RSI using changes on the day so far is", as.character(rscurrent)))
}
}
return(invisible(rs2))
}
#' Generate moving averages
#'
#' Description
#' @param df Dataframe with price data
#' @param ma # of periods for the moving average to calculate
#' @return a vector with the same number of columns as df showing the moving averages. Periods before moving
#' average should be not considered for use. Output is kept same columns for compatibility.
#' @examples
#' SPYDMA200 <- genMA(SPYdaily, 14)
#' @export
genMA = function(df, ma) { #This is a generalized function that allows you to find moving average based on the timeframe of candlestick data. Returns a list that allows for
rp = (df$high + df$low)/2
d1 = dim(df)[1]
l = list()
for(i in 1:d1) {
gl = c()
for(j in 1:ma) {
gl = sort(append(gl,abs(j - i)))
}
l[[i]] = gl
}
nl = list()
for (k in 1:d1) {
nl = append(nl, mean(rp[l[[k]]]))
}
return(unlist(nl))
}
#' Average True Range
#'
#' Returns the average true range as well as the relative price based on the ATR as a reference
#' @param df Dataframe with price data.
#' @param period Calculation period in day for the true range
#' @param current If one wants to input the latest price point before data update
#' @param mrprice Most recent price;
#' @param hideprints if TRUE hides the print outs regarding the percentile within an ATR
#' @return Returns a vector of ATR calculations in dataframe format. If current = TRUE, returns the most recent ATR as well as where price is in the context of the ATR
#' @examples
#' ATR(SPY15, 14)
#' ATR(SPY15, 14, current = TRUE, mrprice = tail(SPYdaily$close, 1) + 2)
#' @export
ATR = function(df, period, current = FALSE, mrprice = NULL, hideprints = TRUE) {
atrs = list()
highs = df$high
lows = df$low
closes = df$close
for (i in 1:dim(df)[1]) {
if (i < period) {
curhighs = highs[1:i]
curlows = lows[1:i]
curcloses = closes[1:i]
a1 = max(curhighs) - min(curlows)
a2 = max(curhighs) - min(curcloses)
a3 = max(curcloses) - min(curlows)
atrs[i] = max(c(a1,a2,a3))
mincur = min(curlows)
maxcur = max(curhighs)
}
if (i >= period) {
curhighs = highs[(i - period) : i]
curlows = lows[(i - period) : i]
curcloses = closes[(i - period) : i]
a1 = max(curhighs) - min(curlows)
a2 = max(curhighs) - min(curcloses)
a3 = max(curcloses) - min(curlows)
atrs[i] = max(c(a1,a2,a3))
mincur = min(curlows)
maxcur = max(curhighs)
}
}
if(current == TRUE){
rng = maxcur - mincur
percentile = ((mrprice - mincur)/rng) * 100
if (hideprints == FALSE) {
print(paste("In the past", as.character(period), "days the low is", as.character(mincur), "while the high is", as.character(maxcur)))
print(paste0(as.character(mrprice), " is ", as.character(percentile), "th percentile of the above range" ))
}
return(percentile)
}
return(invisible(unlist(atrs)))
}
#' Fast Zoom
#'
#' An Easy way to get to where you want to on a candlestick chart or other plots
#' @param plot The plot to be zoomed into
#' @param x A character string in the format("YYYYMMDD") for where to zoom in
#' @return The graph but zoomed in where you want to, mostly for daily data
#' @examples
#' fastzoom(candles(SPYdaily), "20220202")
#' @export
fastzoom = function (plot, x) {
zplot = plot %>% plotly::layout(xaxis = list( range = c( (as.Date(x, '%Y%m%d')), (as.Date(x, '%Y%m%d') + 1))))
return(zplot)
} # x will be a time element ( ex. 20200202) and it will conform to the closest points on the plot
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.