Nothing
# Copyright(c) Microsoft Corporation.
# Licensed under the MIT license.
#' Create an environment
#'
#' @description
#' Configure the R environment to be used for training or web service
#' deployments. When you submit a run or deploy a model, Azure ML builds a
#' Docker image and creates a conda environment with your specifications from
#' your `Environment` object within that Docker container.
#'
#' If the `custom_docker_image` parameter
#' is not set, Azure ML will build a predefined base image (CPU or GPU
#' depending on the `use_gpu` flag) and install any R packages specified in the
#' `cran_packages`, `github_packages`, or `custom_url_packages` parameters.
#' @param name A string of the name of the environment.
#' @param version A string of the version of the environment.
#' @param environment_variables A named list of environment variables names
#' and values. These environment variables are set on the process where the user
#' script is being executed.
#' @param r_version The version of R to be installed.
#' @param rscript_path The Rscript path to use if an environment build is not required.
#' The path specified gets used to call the user script.
#' @param snapshot_date Date of MRAN snapshot to use.
#' @param cran_packages A list of `cran_package` objects to be installed.
#' @param github_packages A list of `github_package` objects to be installed.
#' @param custom_url_packages A character vector of packages to be installed
#' from local directory or custom URL.
#' @param bioconductor_packages A character vector of packages to be installed
#' from Bioconductor.
#' @param custom_docker_image A string of the name of the Docker image from
#' which the image to use for training or deployment will be built. If not set,
#' a predefined Docker image will be used. To use an image from a private Docker
#' repository, you will also have to specify the `image_registry_details` parameter.
#' @param image_registry_details A `ContainerRegistry` object of the details of
#' the Docker image registry for the custom Docker image.
#' @param use_gpu Indicates whether the environment should support GPUs.
#' If `TRUE`, a predefined GPU-based Docker image will be used in the environment.
#' If `FALSE`, a predefined CPU-based image will be used. Predefined Docker images
#' (CPU or GPU) will only be used if the `custom_docker_image` parameter is not set.
#' @param shm_size A string for the size of the Docker container's shared
#' memory block. For more information, see
#' [Docker run reference](https://docs.docker.com/engine/reference/run/)
#' If not set, a default value of `'2g'` is used.
#' @return The `Environment` object.
#' @export
#' @section Details:
#' Once built, the Docker image appears in the Azure Container Registry
#' associated with your workspace, by default. The repository name has the form
#' *azureml/azureml_<uuid>*. The unique identifier (*uuid*) part corresponds to
#' a hash computed from the environment configuration. This allows the service
#' to determine whether an image corresponding to the given environment already
#' exists for reuse.
#'
#' If you make changes to an existing environment, such as adding an R package,
#' a new version of the environment is created when you either submit a run,
#' deploy a model, or manually register the environment. The versioning allows
#' you to view changes to the environment over time.
#' @section Predefined Docker images:
#' When submitting a training job or deploying a model, Azure ML runs your
#' training script or scoring script within a Docker container. If no custom
#' Docker image is specified with the `custom_docker_image` parameter, Azure
#' ML will build a predefined CPU or GPU Docker image. The predefine images extend
#' the Ubuntu 16.04 [Azure ML base images](https://github.com/Azure/AzureML-Containers)
#' and include the following dependencies:
#' \tabular{rrr}{
#' **Dependencies** \tab **Version** \tab **Remarks**\cr
#' azuremlsdk \tab latest \tab (from GitHub)\cr
#' R \tab 3.6.0 \tab -\cr
#' Commonly used R packages \tab - \tab 80+ of the most popular R packages for
#' data science, including the IRKernel, dplyr, shiny, ggplot2, tidyr, caret,
#' and nnet. For the full list of packages included, see
#' [here](https://github.com/Azure/azureml-sdk-for-r/blob/master/misc/r-packages-docker.md).\cr
#' Python \tab 3.7.0 \tab -\cr
#' azureml-defaults \tab latest \tab `azureml-defaults` contains the
#' `azureml-core` and `applicationinsights` packages of the Python SDK that
#' are required for tasks such as logging metrics, uploading artifacts, and
#' deploying models. (from pip)\cr
#' rpy2 \tab latest \tab (from conda)\cr
#' CUDA (GPU image only) \tab 10.0 \tab CuDNN (version 7) is also included
#' }
#' @examples
#' # The following example defines an environment that will build the default
#' # base CPU image.
#' \dontrun{
#' r_env <- r_environment(name = 'myr_env',
#' version = '1')
#' }
#' @seealso
#' `estimator()`, `inference_config()`
#' @md
r_environment <- function(name, version = NULL,
environment_variables = NULL,
r_version = NULL,
rscript_path = NULL,
snapshot_date = NULL,
cran_packages = NULL,
github_packages = NULL,
custom_url_packages = NULL,
bioconductor_packages = NULL,
custom_docker_image = NULL,
image_registry_details = NULL,
use_gpu = FALSE,
shm_size = NULL) {
env <- azureml$core$Environment(name)
env$version <- version
env$environment_variables <- environment_variables
env$docker$enabled <- TRUE
env$docker$base_image <- custom_docker_image
env$r <- azureml$core$environment$RSection()
env$r$r_version <- r_version
env$r$rscript_path <- rscript_path
env$r$snapshot_date <- snapshot_date
if (!is.null(image_registry_details)) {
env$docker$base_image_registry <- image_registry_details
}
if (!is.null(shm_size)) {
env$docker$shm_size <- shm_size
}
if (is.null(custom_docker_image)) {
if (use_gpu) {
env$docker$base_image <- paste0("mcr.microsoft.com/azureml/base-",
"gpu:openmpi3.1.2-cuda10.0-cudnn7-",
"ubuntu16.04")
}
else {
env$docker$base_image <- paste0("mcr.microsoft.com/azureml/base:",
"openmpi3.1.2-ubuntu16.04")
}
}
else{
env$r$user_managed <- TRUE
env$python$user_managed_dependencies <- TRUE
}
if (!is.null(cran_packages)) {
env$r$cran_packages <- list()
for (package in cran_packages) {
cran_package <- azureml$core$environment$RCranPackage()
cran_package$name <- package$name
cran_package$version <- package$version
cran_package$repository <- package$repository
env$r$cran_packages <- c(env$r$cran_packages, cran_package)
}
}
if (!is.null(github_packages)) {
env$r$github_packages <- list()
for (package in github_packages) {
github_package <- azureml$core$environment$RGitHubPackage()
github_package$repository <- package$repository
github_package$auth_token <- package$auth_token
env$r$github_packages <- c(env$r$github_packages, github_package)
}
}
if (!is.null(custom_url_packages)) {
env$r$custom_url_packages <- c(custom_url_packages)
}
if (!is.null(bioconductor_packages)) {
env$r$bioconductor_packages <- c(bioconductor_packages)
}
invisible(env)
}
#' Register an environment in the workspace
#'
#' @description
#' The environment is automatically registered with your workspace when you
#' submit an experiment or deploy a web service. You can also manually register
#' the environment with `register_environment()`. This operation makes the
#' environment into an entity that is tracked and versioned in the cloud, and
#' can be shared between workspace users.
#'
#' Whe used for the first time in training or deployment, the environment is
#' registered with the workspace, built, and deployed on the compute target.
#' The environments are cached by the service. Reusing a cached environment
#' takes much less time than using a new service or one that has bee updated.
#' @param workspace The `Workspace` object.
#' @param environment The `Environment` object.
#' @return The `Environment` object.
#' @export
#' @md
register_environment <- function(environment, workspace) {
env <- environment$register(workspace)
invisible(env)
}
#' Get an existing environment
#'
#' @description
#' Returns an `Environment` object for an existing environment in
#' the workspace.
#' @param workspace The `Workspace` object.
#' @param name A string of the name of the environment.
#' @param version A string of the version of the environment.
#' @return The `Environment` object.
#' @examples
#' \dontrun{
#' ws <- load_workspace_from_config()
#' env <- get_environment(ws, name = 'myenv', version = '1')
#' }
#' @export
#' @md
get_environment <- function(workspace, name, version = NULL) {
azureml$core$Environment$get(workspace, name, version)
}
#' Specify Azure Container Registry details
#'
#' @description
#' Returns a `ContainerRegistry` object with the details for an
#' Azure Container Registry (ACR). This is needed when a custom
#' Docker image used for training or deployment is located in
#' a private image registry. Provide a `ContainerRegistry` object
#' to the `image_registry_details` parameter of either `r_environment()`
#' or `estimator()`.
#' @param address A string of the DNS name or IP address of the
#' Azure Container Registry (ACR).
#' @param username A string of the username for ACR.
#' @param password A string of the password for ACR.
#' @return The `ContainerRegistry` object.
#' @export
#' @seealso
#' `r_environment()`, `estimator()`
#' @md
container_registry <- function(address = NULL,
username = NULL,
password = NULL) {
container_registry <- azureml$core$ContainerRegistry()
container_registry$address <- address
container_registry$username <- username
container_registry$password <- password
invisible(container_registry)
}
#' Specifies a CRAN package to install in environment
#'
#' @description
#' Specifies a CRAN package to install in run environment
#'
#' @param name The package name
#' @param version A string of the package version. If not provided, version
#' will default to latest
#' @param repo The base URL of the repository to use, e.g., the URL of a
#' CRAN mirror. If not provided, the package will be pulled from
#' "https://cloud.r-project.org".
#' @return A named list containing the package specifications
#' @export
#' @section Examples:
#' ```
#' pkg1 <- cran_package("ggplot2", version = "3.3.0")
#' pkg2 <- cran_package("stringr")
#' pkg3 <- cran_package("ggplot2", version = "0.9.1",
#' repo = "http://cran.us.r-project.org")
#'
#' env <- r_environment(name = "r_env",
#' cran_packages = list(pkg1, pkg2, pkg3))
#' ```
#' @seealso [r_environment()]
#' @md
cran_package <- function(name, version = NULL, repo = "https://cloud.r-project.org") {
cran_package <- list(name = name, version = version, repo = repo)
return(cran_package)
}
#' Specifies a Github package to install in environment
#'
#' @description
#' Specifies a Github package to install in run environment
#'
#' @param repository Repository address of the github package
#' @param auth_token Personal access token to install from a private repo.
#' @return A named list containing the package specifications
#' @export
#' @section Examples:
#' ```
#' pkg1 <- github_package("Azure/azureml-sdk-for-r")
#'
#' env <- r_environment(name = "r_env",
#' github_packages = list(pkg1))
#' ```
#' @seealso [r_environment()]
#' @md
github_package <- function(repository, auth_token = NULL) {
github_package <- list(repository = repository, auth_token = auth_token)
return(github_package)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.