Nothing
#' Bayesian Meta-Analysis of Diagnostic Test Data
#'
#' Bayesian meta-analysis of diagnostic test data based on a scale mixtures
#' bivariate random-effects model.
#' This package was developed with the aim of simplifying the use of meta-analysis
#' models that up to now have demanded great statistical expertise in Bayesian meta-analysis.
#' The package implements a series of innovative statistical techniques including:
#' the BSROC (Bayesian Summary ROC) curve, the BAUC (Bayesian AUC), predictive surfaces,
#' the use of prior distributions that avoid boundary estimation problems of component
#' of variance and correlation parameters, analysis of conflict of evidence and robust
#' estimation of model parameters. In addition, the package comes with several published
#' examples of meta-analysis that can be used for illustration or further research in
#' this area.
#'
#' \tabular{ll}{
#' Package: \tab bamdit \cr
#' Type: \tab Package \cr
#' Version: \tab 3.4.2 \cr
#' Date: \tab 2024-09-20 \cr
#' License: \tab GPL (>= 2)\cr
#' LazyLoad: \tab yes\cr }
#'
#'
#' @aliases bamdit-package bamdit
"_PACKAGE"
#'
#' @author PD Dr. Pablo Emilio Verde \email{pabloemilio.verde@@hhu.de}
#'
#' @references Verde P. E. (2010). Meta-analysis of diagnostic test data: A
#' bivariate Bayesian modeling approach. Statistics in Medicine. 29(30):3088-102.
#' doi: 10.1002/sim.4055.
#'
#' @references Verde P. E. (2018). bamdit: An R Package for Bayesian Meta-Analysis
#' of Diagnostic Test Data. Journal of Statistical Software. Volume 86, issue 10, pages 1--32.
#'
#' @keywords Meta-Analysis Outliers ROC Sensitivity Specificity MCMC JAGS AUC
#'
NULL
#' Accuracy of Computer-Aided Diagnosis of Melanoma: A Meta-analysis.
#'
#' @name skin
#'
#' @docType data
#'
#' @description This data frame contains results 70 studies investigated computer-aided diagnosis of melanoma
#'
#' @format A matrix with 70 rows and 15 columns. Each row represents a study's results, the columns are:
#' \describe{
#' \item{"TP"}{number of true positives.}
#' \item{"TN"}{number of ture negatives.}
#' \item{"FP"}{number of false positives.}
#' \item{"FN"}{number of false negative.}
#' \item{"study_ID"}{Study identification}
#' \item{"test_set_source"}{Public or propietary.}
#' \item{"method"}{Diagnostic technique used in the study: computer vision; deep learning or hardware-based.}
#' \item{"test_set_independent"}{yes or no.}
#' \item{"SAMPLE_SELECTION_BR"}{QUADAS-2, Patient selection bias.}
#' \item{"INDEX_TEST_BR"}{QUADAS-2, Index test description/application bias.}
#' \item{"REFERENCE_STANDARD_BR"}{QUADAS-2, Reference standard bias.}
#' \item{"FLOW_AND_TIMING_BR"}{QUADAS-2, Patient flow and timing bias.}
#' \item{"SAMPLE_SELECTION_AP}{QUADAS-2, Patient selection bias.}
#' \item{"INDEX_TEST_AP"}{QUADAS-2, Index test description/application bias.}
#' \item{"REFERENCE_STANDARD_AP"}{QUADAS-2, Reference standard bias.}
#' }
#'
#' @source The data were obtained from
#'
#' Dick V, Sinz C, Mittlböck M, Kittler H, Tschandl P. Accuracy of Computer-Aided Diagnosis of Melanoma:
#' A Meta-analysis. JAMA Dermatol. 2019 Nov 1;155 11:1291-1299.
#' doi: 10.1001/jamadermatol.2019.1375. PMID: 31215969; PMCID: PMC6584889.
#'
#' @keywords datasets
NULL
#' Accuracy of Computer-Aided Diagnosis of Melanoma: A Comparative Meta-analysis.
#'
#' @name skin2
#'
#' @docType data
#'
#' @description This data frame contains results 14 comparative diagnostic studies: CAD vs Dermatologists
#'
#' @format A matrix with 14 rows and 12 columns. Each row represents a study's results, the columns are:
#' \describe{
#' \item{"study"}{Study name and year}
#' \item{"TP_CAD"}{number of true positives CAD.}
#' \item{"TN_CAD"}{number of ture negatives CAD.}
#' \item{"FP_CAD"}{number of false positives CAD.}
#' \item{"FN_CAD"}{number of false negative CAD.}
#' \item{"TP_Dermatologists"}{number of true positives Dermatologists.}
#' \item{"TN_Dermatologists"}{number of ture negatives Dermatologists.}
#' \item{"FP_Dermatologists"}{number of false positives Dermatologists.}
#' \item{"FN_Dermatologists"}{number of false negative Dermatologists.}
#' \item{"test_set_source"}{The database was public domain or propietary.}
#' \item{"cad_method"}{Computer-Aided Diagnostic Technique: computer vision; deep learning or hardware-based.}
#' \item{"test_set_independent"}{yes or no.}
#' }
#'
#' @source The data were obtained from
#'
#' Dick V, Sinz C, Mittlböck M, Kittler H, Tschandl P. Accuracy of Computer-Aided Diagnosis of Melanoma:
#' A Meta-analysis. JAMA Dermatol. 2019 Nov 1;155 11:1291-1299.
#' doi: 10.1001/jamadermatol.2019.1375. PMID: 31215969; PMCID: PMC6584889.
#'
#' @keywords datasets
NULL
#' Systematic review which compares the accuracy of HbA1c vs
#' FPG in diabetes
#'
#' This data frame contains results of diagnostic accuraccy of 38 studies
#' which reported comparison of sensitivity and specificity between
#' HbA1c vs FPG in a population-based screening for type 2 diabetes.
#'
#' @name diabetes
#'
#' @docType data
#'
#' @description This data frame contains results of diagnostic accuracy of 38 studies which reported comparison of sensitivity and specificity between HbA1c vs FPG in a population based screening for type 2 diabetes.
#'
#' @format A data frame with 38 rows and 9 columns. Each row represents study results, the columns are:
#'
#' \describe{
#'\item{Study}{Name of the first author.}
#'\item{TP_HbA1c}{Number of true positive cases for HbA1c.}
#'\item{FP_HbA1c}{Number of false positive cases for HbA1c.}
#'\item{FN_HbA1c}{Number of false negative cases for HbA1c.}
#'\item{TN_HbA1c}{Number of true negative cases for HbA1c.}
#'\item{TP_FPG}{Number of true positive cases for FPG.}
#'\item{FP_FPG}{Number of false positive cases for FPG.}
#'\item{FN_FPG}{Number of false negative cases for FPG.}
#'\item{TN_FPG}{Number of true negative cases for FPG.}
#' }
#'
#'
#'
#' @source
#' Hoyer, A., Kuss, O. Meta-analysis for the comparison of two
#' disgnostic test: a new approach based on copulas. Stat. Med. 2018; 37:739-748
#'
#'
#'
#' @keywords datasets
#'
#'
NULL
#' Systematic reviews of clinical decision tools for acute abdominal pain
#'
#' This data frame contains results of diagnostic accuraccy of 13 studies
#' which reported comparison of sensitivity and specificity between
#' doctors using diagnostic tools vs doctors without decision tools.
#'
#'
#' @name rapt
#' @docType data
#'
#' @description This data frame corresponds to 13 clinical studies reporting the accuracy of doctors added with decision tools.
#'
#' @format A data frame with 13 rows and 13 columns. Each row represents study results, the columns are:
#' \describe{
#'\item{Author}{Name of the first author and year of publication}
#'\item{tp.dr}{Number of true positive cases for unadded doctors.}
#'\item{fp.dr}{Number of false positive cases for unadded doctors.}
#'\item{fn.dr}{Number of false negative cases for unadded doctors.}
#'\item{tn.dr}{Number of true negative cases for unadded doctors.}
#'\item{tp.tools}{Number of true positive cases for doctors with decision tools.}
#'\item{fp.tools}{Number of false positive cases for doctors with decision tools.}
#'\item{fn.tools}{Number of false negative cases for doctors with decision tools.}
#'\item{tn.tools}{Number of true negative cases for doctors with decision tools.}
#'\item{tool}{Diagnostic tool.}
#'\item{n.dr}{Total number of cases for unadded doctors.}
#'\item{n.tools}{Total number of cases for doctors with decision tools.}
#'\item{design}{Study design.}
#' }
#'
#' @references
#'
#' Health Technol Assess. 2006 Nov;10(47):1-167, iii-iv.
#' Systematic reviews of clinical decision tools for acute abdominal pain.
#' Liu JL1, Wyatt JC, Deeks JJ, Clamp S, Keen J, Verde P, Ohmann C,
#' Wellwood J, Dawes M, Altman DG.
#'
#' @source
#'
#' Health Technol Assess. 2006 Nov;10(47):1-167, iii-iv.
#' Systematic reviews of clinical decision tools for acute abdominal pain.
#' Liu JL1, Wyatt JC, Deeks JJ, Clamp S, Keen J, Verde P, Ohmann C,
#' Wellwood J, Dawes M, Altman DG.
#'
#' @keywords datasets
NULL
#' Diagnosis of appendicities with computer tomography scans
#'
#' This data frame corresponds to 51 clinical studies reporting
#' the accuracy of
#' computer tomography (CT) scans for the diagnosis of appendicities.
#'
#'
#' @name ct
#' @docType data
#'
#'
#' @description This data frame corresponds to 51 clinical studies reporting the accuracy of computer tomography (CT) scans for the diagnosis of appendicities.
#'
#'
#' @format A matrix with 51 rows and 17 columns. Each row represents study results, the columns are:
#' \describe{
#' \item{tp}{number of true positives.}
#' \item{n1}{number of patients with disease.}
#' \item{fp}{number of false positives.}
#' \item{n2}{number of patients without disease.}
#' \item{Author}{First author and year.}
#' \item{country}{Country: EU = 1, others/USA = 2.}
#' \item{hosp}{Type of hospital: 1 = university, 2 = others.}
#' \item{inclus}{Inclusion criteria: 1 = Suspected, 2 = appendectomy.}
#' \item{indfind}{Other CT findings included: 1 = no, 2 = yes.}
#' \item{design}{Study design: 1 = prospective, 2 = retrospective.}
#' \item{contr}{Contrast medium: 1 = no, 2 = yes.}
#' \item{localis}{Localisation: 1 = one area, 2 = more than one area.}
#' \item{child}{Children included: 1 = no, 2 = yes.}
#' \item{fup.na}{Followup: 0 = no, 1 = yes.}
#' \item{refer.na}{Valid reference: 0 = no, 1 = yes.}
#' \item{sample.na}{Sample: 0 = selected, 1= consecutive/random.}
#' \item{gender.na}{Gender, female: 0 = less than 50\%; 1 = more than 50\%.}
#' }
#'
#' @references Verde P. E. (2010). Meta-analysis of diagnostic test data: A
#' bivariate Bayesian modeling approach. \emph{Statistics in Medicine}.
#' \bold{29}, 3088-3102.
#'
#' @source The data were obtainded from
#'
#' Ohmann C, Verde PE, Gilbers T, Franke C, Fuerst G, Sauerland S,
#' Boehner H. (2006) Systematic review of CT investigation in suspected acute
#' appendicitis. \emph{Final Report; Coordination Centre for Clinical Trials,
#' Heinrich-Heine University}. Moorenstr. 5, D-40225 Duesseldorf Germany.
#'
#' @keywords datasets
NULL
#' Ectopic pregnancy vs. all other pregnancies data
#'
#' Ectopic pregnancy vs. all other pregnancies data
#' Table III Mol et al. 1998
#'
#' @name ep
#' @docType data
#'
#' @format A matrix with 21 rows and 8 columns. Each row represents study
#' results, the columns are:
#' \describe{
#' \item{tp}{number of true positives.}
#' \item{n1}{number of patients with disease.}
#' \item{fp}{number of false positives.}
#' \item{n2}{number of patients without disease.}
#' \item{d1}{Prospective vs. retrospective.}
#' \item{d2}{Cohort vs. case-control}
#' \item{d3}{Consecutive sampling patients series vs. non-consecutive.}
#' }
#'
#'
#' @source Table III Mol et al. 1998
#' @keywords datasets
NULL
#' Radiological evaluation of lymph node metastases in patients with cervical cancer: a
#' meta-analysis.
#'
#' This data frame summarizes the tables 1-3 of Scheidler et al. 1997.
#'
#'
#' @name scheidler
#' @docType data
#' @format A matrix with 46 rows and 7 columns. Each row represents study
#' results, the columns are:
#' \describe{
#' \item{tp}{true positives.}
#' \item{n1}{number of patients with disease.}
#' \item{fp}{false positives.}
#' \item{n2}{number of patients without disease.}
#' \item{author}{first author of the study.}
#' \item{year}{publication date.}
#' \item{test}{test method used in the study.}
#' }
#'
#'
#' @references Verde P. E. (2010). Meta-analysis of diagnostic test data: A
#' bivariate Bayesian modeling approach. \emph{Statistics in Medicine}.
#' \bold{29}, 3088-3102.
#'
#' @source The data were obtained from
#'
#' Scheidler J, Hricak H, Yu KK, Subak L, Segal MR. (1997) Radiological
#' evaluation of lymph node metastases in patients with cervical cancer: a
#' meta-analysis. \emph{The Journal of the American Medical Association};
#' \bold{278}:1096-1101.
#' @keywords datasets
NULL
#' Accuracy of Positron Emission Tomography for Diagnosis of Pulmonary
#' Nodules and Mass Lesions
#'
#' Data from a Meta-Analysis of Studies Quality of FDG-PET for Diagnosis of SPNs and Mass Lesions
#'
#' @name gould
#' @docType data
#' @format A matrix with 31 rows and 6 columns. Each row represents study
#' results, the columns are:
#'
#' \describe{
#' \item{tp}{number of true positives.}
#' \item{n1}{number of patients with disease.}
#' \item{fp}{number of false positives.}
#' \item{n2}{number of patients without disease.}
#' \item{author}{first author of the study.}
#' \item{year}{publication date.}
#' }
#'
#'
#' @source The data were obtainded from
#'
#' Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens Dk. (2001) Accuracy of
#' positron emission tomography for diagnosis of pulmonary nodules and mass
#' lesions: a meta-analysis. \emph{The Journal of the American Medical
#' Association};\bold{285}:914-24.
#' @keywords datasets
NULL
#' Tumor markers in the diagnosis of primary bladder cancer.
#'
#' Outcome of individual studies evaluating urine markers
#'
#'
#' @name glas
#' @docType data
#'
#' @format A matrix with 46 rows and 7 columns. Each row represents study
#' results, the columns are:
#'
#' \describe{
#' \item{tp}{number of true positives.}
#' \item{n1}{number of patients with disease.}
#' \item{fp}{number of false positives.}
#' \item{n2}{number of patients without disease.}
#' \item{author}{first author of the study.}
#' \item{cutoff}{cutoff in U/ml.}
#' \item{marker}{test method used in the study.}
#' }
#'
#' @references Verde P. E. (2010). Meta-analysis of diagnostic test data: A
#' bivariate Bayesian modeling approach. \emph{Statistics in Medicine}.
#' \bold{29}, 3088-3102.
#'
#' @source The data were obtained from
#'
#' Glas AS, Roos D, Deutekom M, Zwindermann AH, Bossuyt PM, Kurth KH. (2003)
#' Tumor markers in the diagnosis of primary bladder cancer. A systematic
#' review. \emph{Journal of Urology}; \bold{169}:1975-82.
#' @keywords datasets
NULL
#' Diagnosis of Intravascular Device-Related Bloodstream Infection
#'
#' Outcome of individual studies evaluating intravascular device-related
#' bloodstream infection
#'
#'
#' @name safdar05
#' @docType data
#' @format A matrix with 78 rows and 8 columns. Each row represents study
#' results, the columns are:
#' \describe{
#' \item{tp}{number of true positives.}
#' \item{n1}{number of patients with disease.}
#' \item{fp}{number of false positives.}
#' \item{n2}{number of patients without disease.}
#' \item{author}{first author of the study.}
#' \item{year}{publication date.}
#' \item{technique}{diagnostic technique used in the study.}
#' \item{duration}{duration of catheterization: short term or long term or both.}
#' }
#'
#'
#'
#' @source The data were obtained from
#'
#' Safdar N, Fine JP, Maki DG. (2005) Meta-analysis: methods for diagnosing
#' intravascular device-related bloodstream infection.
#' \emph{Ann Intern Med.}; \bold{142}:451-66.
#'
#' @keywords datasets
NULL
#' Diagnosis of lymph node metastasis with magnetic resonance imaging
#'
#'
#' @docType data
#' @name mri
#'
#'
#' @format A matrix with 10 rows and 4 columns. Each row represents study results, the columns are:
#' \describe{
#' \item{tp}{true positives}
#' \item{n1}{number of patients with disease}
#' \item{fp}{false positives}
#' \item{n2}{number of patients without disease}
#' }
#'
#' @source
#' The data were obtained from
#'
#' Scheidler J, Hricak H, Yu KK, Subak L, Segal MR. (1997)
#' Radiological evaluation of lymph node metastases in
#' patients with cervical cancer: a meta-analysis. \emph{The
#' Journal of the American Medical Association};
#' \bold{278}:1096-1101.
#
#'@references
#' Verde P. E. (2010). Meta-analysis of diagnostic test
#' data: A bivariate Bayesian modeling approach.
#' \emph{Statistics in Medicine}. \bold{29}, 3088-3102.
#'
#'@keywords datasets
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.