Description Usage Arguments Value Author(s) See Also
By minimising the cost value, the function estimates the bandwidths of the regressors and kernel-form error density for the burn-in period
1 2 | warmup_admkr(x, inicost, mutsizp, errorsizp, warm = 100, prob = 0.234,
errorprob = 0.44, data_x, data_y)
|
x |
Log of square bandwidths |
inicost |
Cost value |
mutsizp |
Step size of random-walk Metropolis algorithm for the regressors |
errorsizp |
Step size of random-walk Metropolis algorithm for the kernel-form error density |
warm |
Number of burn-in iterations |
prob |
Optimal covergence rate of random-walk Metropolis algorithm for the regressors |
errorprob |
Optimal covergence rate of random-walk Metropolis algorithm for the kernel-form error density |
data_x |
Regressors |
data_y |
Response variable |
x |
Log of square bandwidths |
cost |
Cost value |
mutsizp |
Step size of random-walk Metropolis algorithm for the regressors |
errorsizp |
Step size of random-walk Metropolis algorithm for the kernel-form error density |
Han Lin Shang
mcmcrecord_admkr
, logdensity_admkr
, loglikelihood_admkr
, logpriors_admkr
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.