Description Usage Arguments Details Value Note Author(s) References See Also
Estimated averaged bandwidths of the regressors and averaged variance parameter of the normal error density
1 2 3 4 | mcmcrecord_gaussian(x, inicost, mutsizp, warm = 100, M = 100, prob = 0.234,
num_batch = 10, step = 10, data_x, data_y, xm,
alpha = 0.05, prior_p = 2, prior_st = 1,
mlike = c("Chib", "Geweke", "LaplaceMetropolis", "all"))
|
x |
Log of square bandwidth |
inicost |
Initial cost value |
mutsizp |
Step size of random-walk Metropolis algorithm. At each iteration, the value of |
warm |
Burn-in period |
M |
Number of MCMC iteration |
prob |
Optimal acceptance rate of random-walk Metropolis algorithm |
num_batch |
Number of batch samples |
step |
Recording value at a specific step, in order to achieve iid samples and eliminate correlation |
data_x |
Regressors |
data_y |
Response variable |
xm |
Values of true regression function |
alpha |
Quantile of the critical value in calculating Geweke's log marginal likelihood |
prior_p |
Hyperparameter of inverse-gamma prior |
prior_st |
Hyperparameter of inverse-gamma prior |
mlike |
Method for calculating log marginal likelihood |
Akin to the burn-in period, it determines the retained bandwidths for the regressors and the variance of the error density for finite samples. It also calculates the simulation inefficient factor (SIF) value, R square, mean square error, and log marginal density by Chib (1995), Geweke (1999) and the Laplace Metropolis method describe in Raftery (1996).
sum_h |
Estimated parameters in an order of the bandwidths of the regressors, the variance parameter of the error density and cost value |
h2 |
Estimated parameters in an order of the square bandwidths of the regressors, the square variance parameter of the error density |
sif |
Simulation inefficient factor. The small it is, the better the method is in general |
mutsizp |
Step size of random-walk Metropolis algroithm for each iteration of |
cpost |
Simulation output of square bandwidths and square normal error variance obtained from MCMC |
accept |
Acceptance rate of random-walk Metropolis algorithm |
marginalike |
Log marginal likelihood |
R2 |
R square |
MSE |
Mean square error |
Time-consuming for large iterations.
Han Lin Shang
H. L. Shang (2013) Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density, Computational Statistics and Data Analysis, 67, 185-198.
X. Zhang and R. D. Brooks and M. L. King (2009) A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation, Journal of Econometrics, 153, 21-32.
S. Chib and I. Jeliazkov (2001) Marginal likelihood from the Metropolis-Hastings output, Journal of the American Statistical Association, 96, 453, 270-281.
S. Chib (1995) Marginal likelihood from the Gibbs output, Journal of the American Statistical Association, 90, 432, 1313-1321.
M. A. Newton and A. E. Raftery (1994) Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion), Journal of the Royal Statistical Society, 56, 3-48.
J. Geweke (1998) Using simulation methods for Bayesian econometric models: inference, development, and communication, Econometric Reviews, 18(1), 1-73.
A. E. Raftery (1996) Hypothesis testing and model selection, in Markov Chain Monte Carlo In Practice by W. R. Gilks, S. Richardson and D. J. Spiegelhalter, Chapman and Hall, London.
logdensity_gaussian
, logpriors_gaussian
, loglikelihood_gaussian
, warmup_gaussian
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.