mcmcrecord_admkr: MCMC iterations

Description Usage Arguments Details Value Note Author(s) References See Also

View source: R/mcmcrecord_admkr.R

Description

Estimated averaged bandwidths of the regressors of the kernel-form error density

Usage

1
2
3
mcmcrecord_admkr (x, inicost, mutsizp, errorsizp, warm = 100, M = 100, prob = 0.234, 
    errorprob = 0.44, num_batch = 10, step = 10, data_x, data_y, xm, alpha = 0.05, 
      mlike = c("Chib", "Geweke", "LaplaceMetropolis", "all"))  

Arguments

x

Log of square bandwidth

inicost

Initial cost value

mutsizp

Step size of random-walk Metropolis algorithm. At each iteration, the value of mutsizp will alter depending on acceprance or rejection. As the number of iteration increases, the final acceptance probability will converge to the optimal rate, which is 0.234 for multiple parameters

errorsizp

Step size of random-walk Metropolis algorithm. At each iteration, the value of errorsizp will alter depending on acceprance or rejection. As the number of iteration increases, the final acceptance probability will converge to the optimal rate, which is 0.44 for single parameter

warm

Burn-in period

M

Number of MCMC iteration

prob

Optimal acceptance rate of random-walk Metropolis algorithm for the regression function

errorprob

Optimal acceptance rate of random-walk Metropolis algorithm for the error density

num_batch

Number of batch samples

step

Recording value at a specific step, in order to achieve iid samples and eliminate correlation

data_x

Regressors

data_y

Response variable

xm

Values of true regression function

alpha

Quantile of the critical value in calculating Geweke's log marginal likelihood

mlike

Method for calculating log marginal likelihood

Details

Akin to the burn-in period, it determines the retained bandwidths for the regressors and the variance of the error density for finite samples. It also calculates the simulation inefficient factor (SIF) value, R square, mean square error, and log marginal density by Chib (1995), Geweke (1999) and the Laplace Metropolis method describe in Raftery (1996).

Value

sum_h

Estimated parameters in an order of the bandwidths of the regressors, the variance parameter of the error density and cost value

h2

Estimated parameters in an order of the square bandwidths of the regressors, the square variance parameter of the error density

sif

Simulation inefficient factor. The small it is, the better the method is in general

mutsizp

Step size of random-walk Metropolis algroithm for each iteration of MCMCrecord

cpost

Simulation output of square bandwidths obtained from MCMC

ghost

Simulation output of square bandwidths obtained from MCMC

accept_nw

Acceptance rate of random-walk Metropolis algorithm for the regression function

accept_erro

Acceptance rate of random-walk Metropolis algorithm for the kernel-form error density

marginalike

Log marginal likelihood

R2

R square

MSE

Mean square error

Note

Time-consuming for large iterations.

Author(s)

Han Lin Shang

References

H. L. Shang (2013) Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density, Computational Statistics, in press.

H. L. Shang (2013) Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density, Computational Statistics and Data Analysis, 67, 185-198.

X. Zhang and R. D. Brooks and M. L. King (2009) A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation, Journal of Econometrics, 153, 21-32.

S. Chib and I. Jeliazkov (2001) Marginal likelihood from the Metropolis-Hastings output, Journal of the American Statistical Association, 96, 453, 270-281.

S. Chib (1995) Marginal likelihood from the Gibbs output, Journal of the American Statistical Association, 90, 432, 1313-1321.

M. A. Newton and A. E. Raftery (1994) Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion), Journal of the Royal Statistical Society, 56, 3-48.

J. Geweke (1998) Using simulation methods for Bayesian econometric models: inference, development, and communication, Econometric Reviews, 18(1), 1-73.

A. E. Raftery (1996) Hypothesis testing and model selection, in Markov Chain Monte Carlo In Practice by W. R. Gilks, S. Richardson and D. J. Spiegelhalter, Chapman and Hall, London.

See Also

logdensity_admkr, logpriors_admkr, loglikelihood_admkr, warmup_admkr


bbemkr documentation built on May 1, 2019, 10:53 p.m.