Description Usage Arguments Details Value Note Author(s) References See Also
View source: R/mcmcrecord_admkr.R
Estimated averaged bandwidths of the regressors of the kernel-form error density
| 1 2 3 | 
| x | Log of square bandwidth | 
| inicost | Initial cost value | 
| mutsizp | Step size of random-walk Metropolis algorithm. At each iteration, the value of  | 
| errorsizp | Step size of random-walk Metropolis algorithm. At each iteration, the value of  | 
| warm | Burn-in period | 
| M | Number of MCMC iteration | 
| prob | Optimal acceptance rate of random-walk Metropolis algorithm for the regression function | 
| errorprob | Optimal acceptance rate of random-walk Metropolis algorithm for the error density | 
| num_batch | Number of batch samples | 
| step | Recording value at a specific step, in order to achieve iid samples and eliminate correlation | 
| data_x | Regressors | 
| data_y | Response variable | 
| xm | Values of true regression function | 
| alpha | Quantile of the critical value in calculating Geweke's log marginal likelihood | 
| mlike | Method for calculating log marginal likelihood | 
Akin to the burn-in period, it determines the retained bandwidths for the regressors and the variance of the error density for finite samples. It also calculates the simulation inefficient factor (SIF) value, R square, mean square error, and log marginal density by Chib (1995), Geweke (1999) and the Laplace Metropolis method describe in Raftery (1996).
| sum_h | Estimated parameters in an order of the bandwidths of the regressors, the variance parameter of the error density and cost value | 
| h2 | Estimated parameters in an order of the square bandwidths of the regressors, the square variance parameter of the error density | 
| sif | Simulation inefficient factor. The small it is, the better the method is in general | 
| mutsizp | Step size of random-walk Metropolis algroithm for each iteration of  | 
| cpost | Simulation output of square bandwidths obtained from MCMC | 
| ghost | Simulation output of square bandwidths obtained from MCMC | 
| accept_nw | Acceptance rate of random-walk Metropolis algorithm for the regression function | 
| accept_erro | Acceptance rate of random-walk Metropolis algorithm for the kernel-form error density | 
| marginalike | Log marginal likelihood | 
| R2 | R square | 
| MSE | Mean square error | 
Time-consuming for large iterations.
Han Lin Shang
H. L. Shang (2013) Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density, Computational Statistics, in press.
H. L. Shang (2013) Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density, Computational Statistics and Data Analysis, 67, 185-198.
X. Zhang and R. D. Brooks and M. L. King (2009) A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation, Journal of Econometrics, 153, 21-32.
S. Chib and I. Jeliazkov (2001) Marginal likelihood from the Metropolis-Hastings output, Journal of the American Statistical Association, 96, 453, 270-281.
S. Chib (1995) Marginal likelihood from the Gibbs output, Journal of the American Statistical Association, 90, 432, 1313-1321.
M. A. Newton and A. E. Raftery (1994) Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion), Journal of the Royal Statistical Society, 56, 3-48.
J. Geweke (1998) Using simulation methods for Bayesian econometric models: inference, development, and communication, Econometric Reviews, 18(1), 1-73.
A. E. Raftery (1996) Hypothesis testing and model selection, in Markov Chain Monte Carlo In Practice by W. R. Gilks, S. Richardson and D. J. Spiegelhalter, Chapman and Hall, London.
logdensity_admkr, logpriors_admkr, loglikelihood_admkr, warmup_admkr
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.