Description Usage Arguments Details Value Author(s) References See Also Examples
Calculates the negative of log posterior, using the leave-one-out cross validated samples.
1 | cost_admkr(x, data_x, data_y)
|
x |
Log of square bandwidths |
data_x |
Regressors |
data_y |
Response variable |
Bandwidth can be re-parameterized by a constant time optimal convergence rate, that is, h = c*n^{rate}.
Value of the cost function
Han Lin Shang
H. L. Shang (2013) Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density, Computational Statistics and Data Analysis, 67, 185-198.
X. Zhang, M. L. King and H. L. Shang (2013). A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density. Working paper, http://users.monash.edu.au/~xzhang/zhang.king.shang.2013.pdf
X. Zhang, M. L. King and H. L. Shang (2013). Bayesian bandwidth selection for a nonparametric regression model with mixed types of regressors. Working paper, http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2013/wp13-13.pdf
X. Zhang and M. L. King (2013). Gaussian kernel GARCH models. Working paper, http://users.monash.edu.au/~xzhang/zhang.king.2013.rev.pdf
gibbs_admkr_nw
, gibbs_admkr_erro
1 2 | x = log(c(nrr(data_x, FALSE),2)^2)
inicost = cost_admkr(x, data_x = data_x, data_y = data_ynorm)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.