Description Usage Arguments Value Author(s) See Also
By minimizing the cost value, the function estimates the bandwidths of the regressors and normal error variance parameter for the burn-in period
1 2 | warmup_gaussian(x, inicost, mutsizp, warm = 100, prob = 0.234, data_x, data_y,
prior_p = 2, prior_st = 1)
|
x |
Log of square bandwidths |
inicost |
Cost value |
mutsizp |
Step size of random-walk Metropolis algorithm |
warm |
Number of burn-in iterations |
prob |
Optimal covergence rate of random-walk Metropolis algorithm |
data_x |
Regressors |
data_y |
Response variable |
prior_p |
Hyperparameter of the inverse-gamma prior |
prior_st |
Hyperparameter of the inverse-gamma prior |
x |
Log of square bandwidths |
sigma2 |
Estimate of normal error variance |
cost |
Cost value |
mutsizplast |
Final step size of random-walk Metropolis algorithm |
mutsizp |
Step size of random-walk Metropolis algorithm |
Han Lin Shang
mcmcrecord_gaussian
, logdensity_gaussian
, loglikelihood_gaussian
, logpriors_gaussian
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.