Description Usage Arguments Details Value Author(s) References Examples
View source: R/NadarayaWatsonkernel.R
Nadaraya (1964) and Watson (1964) proposed to estimate m
as a locally weighted average, using a kernel as a weighting function.
1 | NadarayaWatsonkernel(x, y, h, gridpoint)
|
x |
A set of |
y |
A set of |
h |
Optimal bandwidth chosen by the user. |
gridpoint |
A set of gridpoints. |
\frac{∑^n_{i=1}K_h(x-x_i)y_i}{∑^n_{j=1}K_h(x-x_j)},
where K is a kernel function with a bandwidth h
.
gridpoint |
A set of gridpoints. |
mh |
Density values corresponding to the set of gridpoints. |
Han Lin Shang
M. Rosenblatt (1956) Remarks on some nonparametric estimates of a density function, The Annals of Mathematical Statistics, 27(3), 832-837.
E. Parzen (1962) On estimation of a probability density function and mode, The Annals of Mathematical Statistics, 33(3), 1065-1076.
E. A. Nadaraya (1964) On estimating regression, Theory of probability and its applications, 9(1), 141-142.
G. S. Watson (1964) Smooth regression analysis, Sankhya: The Indian Journal of Statistics (Series A), 26(4), 359-372.
1 2 3 | x = rnorm(100)
y = rnorm(100)
NadarayaWatsonkernel(x, y, h = 2, gridpoint = seq(-3, 3, length.out = 100))
|
Loading required package: MASS
$gridpoint
[1] -3.00000000 -2.93939394 -2.87878788 -2.81818182 -2.75757576 -2.69696970
[7] -2.63636364 -2.57575758 -2.51515152 -2.45454545 -2.39393939 -2.33333333
[13] -2.27272727 -2.21212121 -2.15151515 -2.09090909 -2.03030303 -1.96969697
[19] -1.90909091 -1.84848485 -1.78787879 -1.72727273 -1.66666667 -1.60606061
[25] -1.54545455 -1.48484848 -1.42424242 -1.36363636 -1.30303030 -1.24242424
[31] -1.18181818 -1.12121212 -1.06060606 -1.00000000 -0.93939394 -0.87878788
[37] -0.81818182 -0.75757576 -0.69696970 -0.63636364 -0.57575758 -0.51515152
[43] -0.45454545 -0.39393939 -0.33333333 -0.27272727 -0.21212121 -0.15151515
[49] -0.09090909 -0.03030303 0.03030303 0.09090909 0.15151515 0.21212121
[55] 0.27272727 0.33333333 0.39393939 0.45454545 0.51515152 0.57575758
[61] 0.63636364 0.69696970 0.75757576 0.81818182 0.87878788 0.93939394
[67] 1.00000000 1.06060606 1.12121212 1.18181818 1.24242424 1.30303030
[73] 1.36363636 1.42424242 1.48484848 1.54545455 1.60606061 1.66666667
[79] 1.72727273 1.78787879 1.84848485 1.90909091 1.96969697 2.03030303
[85] 2.09090909 2.15151515 2.21212121 2.27272727 2.33333333 2.39393939
[91] 2.45454545 2.51515152 2.57575758 2.63636364 2.69696970 2.75757576
[97] 2.81818182 2.87878788 2.93939394 3.00000000
$mh
[1] -0.0059558077 -0.0047555543 -0.0035971487 -0.0024802679 -0.0014045946
[6] -0.0003698182 0.0006243656 0.0015782544 0.0024921390 0.0033663031
[11] 0.0042010234 0.0049965693 0.0057532028 0.0064711787 0.0071507441
[16] 0.0077921386 0.0083955943 0.0089613356 0.0094895793 0.0099805346
[21] 0.0104344032 0.0108513790 0.0112316488 0.0115753915 0.0118827791
[26] 0.0121539760 0.0123891399 0.0125884211 0.0127519633 0.0128799036
[31] 0.0129723725 0.0130294943 0.0130513872 0.0130381637 0.0129899306
[36] 0.0129067896 0.0127888370 0.0126361649 0.0124488605 0.0122270072
[41] 0.0119706846 0.0116799689 0.0113549334 0.0109956485 0.0106021826
[46] 0.0101746023 0.0097129725 0.0092173576 0.0086878211 0.0081244266
[51] 0.0075272382 0.0068963206 0.0062317402 0.0055335652 0.0048018660
[56] 0.0040367161 0.0032381923 0.0024063754 0.0015413507 0.0006432083
[61] -0.0002879558 -0.0012520398 -0.0022489354 -0.0032785267 -0.0043406905
[66] -0.0054352953 -0.0065622006 -0.0077212568 -0.0089123045 -0.0101351738
[71] -0.0113896841 -0.0126756433 -0.0139928474 -0.0153410803 -0.0167201128
[76] -0.0181297026 -0.0195695936 -0.0210395154 -0.0225391833 -0.0240682973
[81] -0.0256265423 -0.0272135873 -0.0288290854 -0.0304726730 -0.0321439702
[86] -0.0338425797 -0.0355680875 -0.0373200616 -0.0390980527 -0.0409015935
[91] -0.0427301990 -0.0445833656 -0.0464605720 -0.0483612785 -0.0502849268
[96] -0.0522309407 -0.0541987257 -0.0561876688 -0.0581971391 -0.0602264878
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.