gibbs_ar | R Documentation |
Obtain samples of the posterior of a Bayesian autoregressive model of fixed order.
gibbs_ar(
data,
ar.order,
Ntotal,
burnin,
thin = 1,
print_interval = 500,
numerical_thresh = 1e-07,
adaption.N = burnin,
adaption.batchSize = 50,
adaption.tar = 0.44,
full_lik = F,
rho.alpha = rep(1, ar.order),
rho.beta = rep(1, ar.order),
sigma2.alpha = 0.001,
sigma2.beta = 0.001
)
data |
numeric vector; NA values are interpreted as missing values and treated as random |
ar.order |
order of the autoregressive model (integer >= 0) |
Ntotal |
total number of iterations to run the Markov chain |
burnin |
number of initial iterations to be discarded |
thin |
thinning number (postprocessing) |
print_interval |
Number of iterations, after which a status is printed to console |
numerical_thresh |
Lower (numerical pointwise) bound for the spectral density |
adaption.N |
total number of iterations, in which the proposal variances (of rho) are adapted |
adaption.batchSize |
batch size of proposal adaption for the rho_i's (PACF) |
adaption.tar |
target acceptance rate for the rho_i's (PACF) |
full_lik |
logical; if TRUE, the full likelihood for all observations is used; if FALSE, the partial likelihood for the last n-p observations |
rho.alpha , rho.beta |
prior parameters for the rho_i's: 2*(rho-0.5)~Beta(rho.alpha,rho.beta), default is Uniform(-1,1) |
sigma2.alpha , sigma2.beta |
prior parameters for sigma2 (inverse gamma) |
Partial Autocorrelation Structure (PACF, uniform prior) and the residual variance sigma2 (inverse gamma prior) is used as model parametrization. The DIC is computed with two times the posterior variance of the deviance as effective number of parameters, see (7.10) in the referenced book by Gelman et al. Further details can be found in the simulation study section in the referenced paper by C. Kirch et al. For more information on the PACF parametrization, see the referenced paper by Barndorff-Nielsen and Schou.
list containing the following fields:
rho |
matrix containing traces of the PACF parameters (if p>0) |
sigma2 |
trace of sigma2 |
DIC |
a list containing the numeric value |
psd.median , psd.mean |
psd estimates: (pointwise) posterior median and mean |
psd.p05 , psd.p95 |
pointwise credibility interval |
psd.u05 , psd.u95 |
uniform credibility interval |
lpost |
trace of log posterior |
C. Kirch et al. (2018) Beyond Whittle: Nonparametric Correction of a Parametric Likelihood With a Focus on Bayesian Time Series Analysis Bayesian Analysis <doi:10.1214/18-BA1126>
A. Gelman et al. (2013) Bayesian Data Analysis, Third Edition
O. Barndorff-Nielsen and G. Schou On the parametrization of autoregressive models by partial autocorrelations Journal of Multivariate Analysis (3),408-419 <doi:10.1016/0047-259X(73)90030-4>
## Not run:
##
## Example 1: Fit an AR(p) model to sunspot data:
##
# Use this variable to set the AR model order
p <- 2
data <- sqrt(as.numeric(sunspot.year))
data <- data - mean(data)
# If you run the example be aware that this may take several minutes
print("example may take some time to run")
mcmc <- gibbs_ar(data=data, ar.order=p, Ntotal=10000, burnin=4000, thin=2)
# Plot spectral estimate, credible regions and periodogram on log-scale
plot(mcmc, log=T)
##
## Example 2: Fit an AR(p) model to high-peaked AR(1) data
##
# Use this variable to set the AR model order
p <- 1
n <- 256
data <- arima.sim(n=n, model=list(ar=0.95))
data <- data - mean(data)
omega <- fourier_freq(n)
psd_true <- psd_arma(omega, ar=0.95, ma=numeric(0), sigma2=1)
# If you run the example be aware that this may take several minutes
print("example may take some time to run")
mcmc <- gibbs_ar(data=data, ar.order=p, Ntotal=10000, burnin=4000, thin=2)
# Compare estimate with true function (green)
plot(mcmc, log=F, pdgrm=F, credib="uniform")
lines(x=omega, y=psd_true, col=3, lwd=2)
# Compute the Integrated Absolute Error (IAE) of posterior median
cat("IAE=", mean(abs(mcmc$psd.median-psd_true)[-1]) , sep="")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.