R/cocMatrix.R

Defines functions reduceRefs cocMatrix

Documented in cocMatrix

utils::globalVariables(c("item", "SR"))
#' Bibliographic bipartite network matrices
#'
#' \code{cocMatrix} computes occurrences between elements of a Tag Field from a bibliographic data frame. Manuscript is the unit of analysis.
#'
#' This occurrence matrix represents a bipartite network which can be transformed into a collection of bibliographic
#' networks such as coupling, co-citation, etc..
#'
#' The function follows the approach proposed by Batagelj & Cerinsek (2013) and Aria & cuccurullo (2017).\cr\cr
#'
#' References:\cr
#' Batagelj, V., & Cerinsek, M. (2013). On bibliographic networks. Scientometrics, 96(3), 845-864.\cr
#' Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975.\cr
#'
#' @param M is a data frame obtained by the converting function
#'   \code{\link{convert2df}}. It is a data matrix with cases corresponding to
#'   articles and variables to Field Tag in the original WoS or SCOPUS file.
#' @param Field is a character object. It indicates one of the field tags of the
#'   standard ISI WoS Field Tag codify. Field can be equal to one of these tags:
#'   \tabular{lll}{ \code{AU}\tab   \tab Authors\cr \code{SO}\tab   \tab
#'   Publication Name (or Source)\cr \code{JI}\tab   \tab ISO Source
#'   Abbreviation\cr \code{DE}\tab   \tab Author Keywords\cr \code{ID}\tab
#'   \tab Keywords associated by WoS or SCOPUS database \cr 
#'   \code{KW_Merged}\tab    \tab All Keywords (merged by DE and ID) \cr
#'   \code{CR}\tab   \tab Cited References}
#'
#'   for a complete list of filed tags see:
#'   \href{https://www.bibliometrix.org/documents/Field_Tags_bibliometrix.pdf}{Field Tags used in bibliometrix}\cr\cr
#'
#' @param type indicates the output format of co-occurrences: \tabular{lll}{
#'   \code{type = "matrix"} \tab   \tab produces an object of class
#'   \code{matrix}\cr \code{type = "sparse"} \tab   \tab produces an object of
#'   class \code{dgMatrix} of the package \code{Matrix}. "sparse"
#'   argument generates a compact representation of the matrix.}
#' @param n is an integer. It indicates the number of items to select. If \code{N = NULL}, all items are selected.
#' @param sep is the field separator character. This character separates strings in each
#' column of the data frame. The default is \code{sep = ";"}.
#' @param binary is a logical. If TRUE each cell contains a 0/1. if FALSE each cell contains the frequency.
#' @param short is a logical. If TRUE all items with frequency<2 are deleted to reduce the matrix size.
#' @param remove.terms is a character vector. It contains a list of additional terms to delete from the documents before term extraction. The default is \code{remove.terms = NULL}.
#' @param synonyms is a character vector. Each element contains a list of synonyms, separated by ";",  that will be merged into a single term (the first word contained in the vector element). The default is \code{synonyms = NULL}.
#' @return a bipartite network matrix with cases corresponding to manuscripts and variables to the
#'   objects extracted from the Tag \code{Field}.
#'
#' @examples
#' # EXAMPLE 1: Articles x Authors occurrence matrix
#'
#' data(scientometrics, package = "bibliometrixData")
#' WA <- cocMatrix(scientometrics, Field = "AU", type = "sparse", sep = ";")
#'
#' # EXAMPLE 2: Articles x Cited References occurrence matrix
#'
#' # data(scientometrics, package = "bibliometrixData")
#'
#' # WCR <- cocMatrix(scientometrics, Field = "CR", type = "sparse", sep = ";")
#'
#' # EXAMPLE 3: Articles x Cited First Authors occurrence matrix
#'
#' # data(scientometrics, package = "bibliometrixData")
#' # scientometrics <- metaTagExtraction(scientometrics, Field = "CR_AU", sep = ";")
#' # WCR <- cocMatrix(scientometrics, Field = "CR_AU", type = "sparse", sep = ";")
#'
#' @seealso \code{\link{convert2df}} to import and convert an ISI or SCOPUS
#'   Export file in a data frame.
#' @seealso \code{\link{biblioAnalysis}} to perform a bibliometric analysis.
#' @seealso \code{\link{biblioNetwork}} to compute a bibliographic network.
#' @export

cocMatrix <- function(M, Field = "AU", type = "sparse", n = NULL, sep = ";", binary = TRUE,
                      short = FALSE, remove.terms = NULL, synonyms = NULL) {
  #
  # The function creates occurrences data between Works and Field
  #
  # type indicates the output format of occurrences:
  #   "matrix" argument generates a W x Field sparse matrix
  #   "sparse" argument generates a compact representation of the matrix (using the package Matrix)
  #    it represents a compact representation of a occurrences matrix.
  # Field indicates the ISI Tag
  # if Field is AU -> WA (Works x Authors)
  # if Field is CR -> WR (Works x References)
  # if Field is DE -> WK (Works x Keywords)
  # etc.
  # crossprod <- Matrix::crossprod
  
  size <- dim(M)
  if (!"LABEL" %in% names(M)) row.names(M) <- M$SR
  RowNames <- row.names(M)

  if (Field == "KW_Merged") M <- M %>% mergeKeywords(force = FALSE)
  ### REMOVE TERMS AND MERGE SYNONYMS
  if (Field %in% c("ID", "DE","KW_Merged","TI", "TI_TM", "AB", "AB_TM")) {
    # Crete df with all terms

    Fi <- strsplit(M[, Field], sep)
    TERMS <- data.frame(item = trimws(unlist(Fi)), SR = rep(M$SR, lengths(Fi)))

    # Merge synonyms in the vector synonyms
    if (length(synonyms) > 0 & is.character(synonyms)) {
      s <- strsplit(toupper(synonyms), ";")
      snew <- trimws(unlist(lapply(s, function(l) l[1])))
      sold <- (lapply(s, function(l) {
        l <- trimws(l[-1])
      }))

      for (i in 1:length(s)) {
        TERMS$item[TERMS$item %in% unlist(sold[[i]])] <- snew[i]
      }
    }

    TERMS <- TERMS %>%
      anti_join(data.frame(item = trimws(toupper(remove.terms))), by = "item") %>%
      mutate(item = trimws(item))

    TERMS <- TERMS %>%
      group_by(SR) %>%
      summarize(item = paste(item, collapse = ";"))

    M <- M %>%
      left_join(TERMS, by = "SR")
    M[, Field] <- M$item
    row.names(M) <- RowNames
  }

  if (Field == "CR") {
    M$CR <- gsub("DOI;", "DOI ", as.character(M$CR))
  }

  if (Field %in% names(M)) {
    Fi <- strsplit(M[, Field], sep)
  } else {
    return(print(paste("Field", Field, "is not a column name of input data frame")))
  }
  Fi <- lapply(Fi, trim.leading)
  if (Field == "CR") {
    Fi <- lapply(Fi, function(l) l <- l[nchar(l) > 10])
  } ## delete not congruent references

  ## Scelta dell'informazione contenuta in CR da utilizzare (Reference, Autore, Affiliation, ecc.)

  # vector of unique units
  allField <- unlist(Fi)
  allField <- allField[!is.na(allField)]

  if (Field == "CR") {
    ind <- which(substr(allField, 1, 1) != "(")
    S <- allField
    S[ind] <- gsub("\\).*", ")", allField[ind])
    S[-ind] <- substr(S[-ind], 1, 100)
    S <- gsub(",", " ", S)
    S <- gsub(";", " ", S)
    S <- reduceRefs(S)
    allField <- trimES(S)
    Fi <- lapply(Fi, function(l) {
      l <- gsub("\\).*", ")", l)
      l <- gsub(",", " ", l)
      l <- gsub(";", " ", l)
      l <- l[nchar(l) > 0]
      l <- reduceRefs(l)
      l <- trimES(l)
      return(l)
    })
  } else {
    # normalize reference names
    S <- gsub("\\,", ";", allField)
    S <- sub("\\;", ",", S)
    S <- sub("\\;", ",", S)
    S <- gsub("\\;.*", "", S)
    allField <- trimws(S)
    Fi <- lapply(Fi, function(l) {
      l <- gsub("\\,", ";", l)
      l <- sub("\\;", ",", l)
      l <- sub("\\;", ",", l)
      l <- gsub("\\;.*", "", l)
      l <- l[nchar(l) > 0]
      l <- trimws(l)
      return(l)
    })
  }
  tabField <- sort(table(allField), decreasing = TRUE)
  uniqueField <- names(tabField)
  # select n items
  if (!is.null(n)) {
    if ("NA" %in% uniqueField[1:n]) n <- n + 1
    uniqueField <- uniqueField[1:n]
  } else if (isTRUE(short)) {
    uniqueField <- names(tabField[tabField > 1]) # remove items with frequency<2
  }

  if (length(uniqueField) < 1) {
    print("Matrix is empty!!")
    return(NA)
  }

  if (type == "matrix" | !isTRUE(binary)) {
    # Initialization of WA matrix
    WF <- matrix(0, size[1], length(uniqueField))
  } else if (type == "sparse") {
    WF <- Matrix(0, size[1], length(uniqueField))
  } else {
    print("error in type argument")
    return()
  }
  colnames(WF) <- uniqueField
  rownames(WF) <- rownames(M)
  # Population of WA matrix
  for (i in 1:size[1]) {
    if (length(Fi[[i]]) > 0 & !is.na(Fi[[i]][1])) {
      # print(i)
      # if (Field=="CR"){Fi[[i]]=reduceRefs(Fi[[i]])}
      if (isTRUE(binary)) {
        ## binary counting
        ind <- uniqueField %in% Fi[[i]]
        if (sum(ind) > 0) {
          WF[i, ind] <- 1
        }
      } else {
        ## full counting
        tab <- table(Fi[[i]])
        name <- names(tab)[names(tab) %in% uniqueField]
        name <- name[nchar(name) > 0]
        if (length(name) > 0) {
          WF[i, name] <- tab[name]
        }
      }
    }
  }

  if (type == "sparse" & !isTRUE(binary)) {
    WF <- Matrix(WF)
  }


  WF <- WF[, !is.na(uniqueField)]
  ind <- which(colnames(WF) == "NA")
  if (length(ind) > 0) {
    WF <- WF[, -ind]
  }

  return(WF)
}

reduceRefs <- function(A) {
  ind <- unlist(regexec("*V[0-9]", A))
  A[ind > -1] <- substr(A[ind > -1], 1, (ind[ind > -1] - 1))
  ind <- unlist(regexec("*DOI ", A))
  A[ind > -1] <- substr(A[ind > -1], 1, (ind[ind > -1] - 1))
  return(A)
}

Try the bibliometrix package in your browser

Any scripts or data that you put into this service are public.

bibliometrix documentation built on June 8, 2025, 10:58 a.m.