R/summary.bibliometrix_netstat.R

Defines functions summary.bibliometrix_netstat

Documented in summary.bibliometrix_netstat

#' Summarizing network analysis results
#'
#' \code{summary} method for class '\code{bibliometrix_netstat}'
#' @param object is the object for which a summary is desired.
#' @param ... can accept two arguments:\cr
#' \code{k} integer, used for table formatting (number of rows). Default value is 10.\cr
#' @return The function \code{summary} computes and returns on display several statistics both at network and vertex level.
#'
#'
#'
#' @examples
#'
#' # to run the example, please remove # from the beginning of the following lines
#' # data(scientometrics, package = "bibliometrixData")
#'
#' # NetMatrix <- biblioNetwork(scientometrics, analysis = "collaboration",
#' #                   network = "authors", sep = ";")
#' # netstat <- networkStat(NetMatrix, stat = "all", type = "degree")
#' # summary(netstat)
#'
#' @method summary bibliometrix_netstat
#' @export

summary.bibliometrix_netstat <- function(object, ...) {
  if (!inherits(object, "bibliometrix_netstat")) {
    cat('\n argument "object" have to be an object of class "netstat"\n')
    return(NA)
  }

  arguments <- list(...)
  if (sum(names(arguments) == "k") == 0) {
    k <- 10
  } else {
    k <- arguments$k
  }

  # Main Statistics about network
  MainStatNet <- ("\n\nMain statistics about the network\n\n")
  MainStatNet[2] <- paste("Size                                 ", object$network$networkSize, "\n")
  MainStatNet[3] <- paste("Density                              ", round(object$network$networkDensity, 3), "\n")
  MainStatNet[4] <- paste("Transitivity                         ", round(object$network$networkTransitivity, 3), "\n")
  MainStatNet[5] <- paste("Diameter                             ", round(object$network$networkDiameter, 3), "\n")
  switch(object$type,
    degree = {
      MainStatNet[6] <- paste("Degree Centralization                ", round(object$network$networkCentrDegree, 3), "\n")
    },
    pagerank = {
      MainStatNet[6] <- paste("Degree Centralization                ", round(object$network$networkCentrDegree, 3), "\n")
    },
    hub = {
      MainStatNet[6] <- paste("Degree Centralization                ", round(object$network$networkCentrDegree, 3), "\n")
    },
    authority = {
      MainStatNet[6] <- paste("Degree Centralization                ", round(object$network$networkCentrDegree, 3), "\n")
    },
    closeness = {
      MainStatNet[6] <- paste("Closeness Centralization             ", round(object$network$networkCentrCloseness, 3), "\n")
    },
    betweenness = {
      MainStatNet[6] <- paste("Betweenness Centralization           ", round(object$network$networkCentrbetweenness, 3), "\n")
    },
    eigenvector = {
      MainStatNet[6] <- paste("Eigenvector Centralization           ", round(object$network$networkCentrEigen, 3), "\n")
    }
  )

  MainStatNet[7] <- paste("Average path length                  ", round(object$network$NetworkAverPathLeng, 3), "\n")
  MainStatNet[8] <- paste("\n")
  cat(MainStatNet)
  cat("\n\n\n")

  if (object$stat == "all") {
    switch(object$type,
      degree = {
        # Main measures of centrality and prestige of vertices
        cat("\n\nMain measures of centrality and prestige of vertices\n\n")
        # Centrality Degree
        cat("\nDegree Centrality: Top vertices\n\n")
        CD <- object$vertex[, 1:2]

        A <- CD[order(-CD$vertexCentrDegree), ]
        names(A) <- c("Vertex ID             ", "Degree Centrality")
        A <- format(A[1:k, ], justify = "left", digits = 3)
        row.names(A) <- 1:k
        print(A, row.names = TRUE)
        cat("\n")
      },
      closeness = {
        # Centrality Closeness
        cat("\nCloseness Centrality: Top vertices\n\n")
        CD <- object$vertex[, c(1, 3)]

        A <- CD[order(-CD$vertexCentrCloseness), ]
        names(A) <- c("Vertex ID             ", "Closeness Centrality")
        A <- format(A[1:k, ], justify = "left", digits = 3)
        row.names(A) <- 1:k
        print(A, row.names = TRUE)
        cat("\n")
      },
      eigenvector = {
        # Centrality Eigenvectors
        cat("\nEigenvector Centrality: Top vertices\n\n")
        CD <- object$vertex[, c(1, 4)]

        A <- CD[order(-CD$vertexCentrEigen), ]
        names(A) <- c("Vertex ID             ", "Eigenvector Centrality")
        A <- format(A[1:k, ], justify = "left", digits = 3)
        row.names(A) <- 1:k
        print(A, row.names = TRUE)
        cat("\n")
      },
      betweenness = {
        # Centrality betweeness
        cat("\nBetweenness Centrality: Top vertices\n\n")
        CD <- object$vertex[, c(1, 5)]

        A <- CD[order(-CD$vertexCentrBetweenness), ]
        names(A) <- c("Vertex ID             ", "Betweenness Centrality")
        A <- format(A[1:k, ], justify = "left", digits = 3)
        row.names(A) <- 1:k
        print(A, row.names = TRUE)
        cat("\n")
      },
      pagerank = {
        # pagerank
        cat("\nPageRank Score: Top vertices\n\n")
        CD <- object$vertex[, c(1, 6)]

        A <- CD[order(-CD$vertexPageRank), ]
        names(A) <- c("Vertex ID             ", "Pagerank Score")
        A <- format(A[1:k, ], justify = "left", digits = 3)
        row.names(A) <- 1:k
        print(A, row.names = TRUE)
        cat("\n")
      },
      hub = {
        # hub
        cat("\nHub Score: Top vertices\n\n")
        CD <- object$vertex[, c(1, 7)]

        A <- CD[order(-CD$vertexHub), ]
        names(A) <- c("Vertex ID             ", "Hub Score")
        A <- format(A[1:k, ], justify = "left", digits = 3)
        row.names(A) <- 1:k
        print(A, row.names = TRUE)
        cat("\n")
      },
      authority = {
        # Authority
        cat("\nAuthority Score: Top vertices\n\n")
        CD <- object$vertex[, c(1, 8)]

        A <- CD[order(-CD$vertexAuthority), ]
        names(A) <- c("Vertex ID             ", "Authority Score")
        A <- format(A[1:k, ], justify = "left", digits = 3)
        row.names(A) <- 1:k
        print(A, row.names = TRUE)
        cat("\n")
      }
    )
  }

  invisible(TRUE)
}

Try the bibliometrix package in your browser

Any scripts or data that you put into this service are public.

bibliometrix documentation built on June 8, 2025, 10:58 a.m.