Nothing
# Start Inf.Array.OTC1() function
###############################################################################
# Brianna Hitt - 05-01-17
# Updated: Brianna Hitt - 06-20-18
# Brianna Hitt - 04.02.2020
# Changed cat() to message()
Inf.Array.OTC1 <- function(p, Se, Sp, group.sz, obj.fn, weights = NULL,
alpha = 2, updateProgress = NULL, trace = TRUE,
print.time = TRUE, ...) {
start.time <- proc.time()
set.of.I <- group.sz
save.it <- matrix(data = NA, nrow = length(set.of.I),
ncol = max(set.of.I)^2 + 16)
count <- 1
for (I in set.of.I) {
N <- I^2
# build a vector of probabilities for a heterogeneous population
if (length(p) == 1) {
p.vec <- expectOrderBeta(p = p, alpha = alpha, size = N, ...)
} else if (length(p) > 1) {
p.vec <- sort(p)
alpha <- NA
}
# build a matrix of probabilities using the gradient design
p.ga <- informativeArrayProb(prob.vec = p.vec, nr = I, nc = I,
method = "gd")
# call Array.Measures() to calculate descriptive measures for the given
# array size
save.info <- Array.Measures(p = p.ga, se = Se, sp = Sp)
# extract accuracy measures for each individual
ET <- save.info$ET
PSe.mat <- save.info$PSe
PSp.mat <- save.info$PSp
if ("MAR" %in% obj.fn) {
MAR <- MAR.func(ET = ET, p.vec = p.ga,
PSe.vec = PSe.mat, PSp.vec = PSp.mat)
} else {MAR <- NA}
# calculate overall accuracy measures
PSe <- sum(p.ga * PSe.mat) / sum(p.ga)
PSp <- sum((1 - p.ga) * (PSp.mat)) / sum(1 - p.ga)
PPPV <- sum(p.ga * PSe.mat) / sum(p.ga * PSe.mat +
(1 - p.ga) * (1 - PSp.mat))
PNPV <- sum((1 - p.ga) * PSp.mat) / sum((1 - p.ga) * PSp.mat +
p.ga * (1 - PSe.mat))
# for each row in the matrix of weights, calculate the GR function
if (is.null(dim(weights))) {
GR1 <- NA
GR2 <- NA
GR3 <- NA
GR4 <- NA
GR5 <- NA
GR6 <- NA
} else {
GR1 <- GR.func(ET = ET, p.vec = p.ga,
PSe.vec = PSe.mat, PSp.vec = PSp.mat,
D1 = weights[1,1], D2 = weights[1,2])
if (dim(weights)[1] >= 2) {
GR2 <- GR.func(ET = ET, p.vec = p.ga,
PSe.vec = PSe.mat, PSp.vec = PSp.mat,
D1 = weights[2,1], D2 = weights[2,2])
} else {GR2 <- NA}
if (dim(weights)[1] >= 3) {
GR3 <- GR.func(ET = ET, p.vec = p.ga,
PSe.vec = PSe.mat, PSp.vec = PSp.mat,
D1 = weights[3,1], D2 = weights[3,2])
} else {GR3 <- NA}
if (dim(weights)[1] >= 4) {
GR4 <- GR.func(ET = ET, p.vec = p.ga,
PSe.vec = PSe.mat, PSp.vec = PSp.mat,
D1 = weights[4,1], D2 = weights[4,2])
} else {GR4 <- NA}
if (dim(weights)[1] >= 5) {
GR5 <- GR.func(ET = ET, p.vec = p.ga,
PSe.vec = PSe.mat, PSp.vec = PSp.mat,
D1 = weights[5,1], D2 = weights[5,2])
} else {GR5 <- NA}
if (dim(weights)[1] >= 6) {
GR6 <- GR.func(ET = ET, p.vec = p.ga,
PSe.vec = PSe.mat, PSp.vec = PSp.mat,
D1 = weights[6,1], D2 = weights[6,2])
} else {GR6 <- NA}
}
save.it[count,] <- c(p.vec,
rep(NA, max(0, max(set.of.I)^2 - length(p.vec))),
alpha, I, N, ET, ET / N, MAR, GR1 / N, GR2 / N,
GR3 / N, GR4 / N, GR5 / N, GR6 / N,
PSe, PSp, PPPV, PNPV)
if (is.function(updateProgress)) {
updateText <- paste0("Row/Column Size = ", I, ", Array Size = ", N)
updateProgress(value = count / (length(set.of.I) + 1),
detail = updateText)
}
# print the progress, if trace == TRUE
if (trace) {
cat("Row/Column Size = ", I, ", Array Size = ", N, "\n", sep = "")
}
count <- count + 1
}
# save the results for each initial array size
if (length(set.of.I) == 1) {
configs <- NA
} else {
if (obj.fn[1] == "ET") {
configs <- (save.it[, c(1:(max(set.of.I)^2 + 4),(max(set.of.I)^2 + 5),
(max(set.of.I)^2 + 13):ncol(save.it))])[order(save.it[,(max(set.of.I)^2 + 5)]),]
} else if (obj.fn[1] == "MAR") {
configs <- (save.it[, c(1:(max(set.of.I)^2 + 4),(max(set.of.I)^2 + 6),
(max(set.of.I)^2 + 13):ncol(save.it))])[order(save.it[,(max(set.of.I)^2 + 6)]),]
} else if (obj.fn[1] == "GR") {
configs <- (save.it[, c(1:(max(set.of.I)^2 + 4),(max(set.of.I)^2 + 7),
(max(set.of.I)^2 + 13):ncol(save.it))])[order(save.it[,(max(set.of.I)^2 + 7)]),]
}
colnames(configs) <- c(rep(x = "p", times = max(set.of.I)^2),
"alpha", "I", "N", "ET", "value", "PSe", "PSp",
"PPPV", "PNPV")
configs <- convert.config(algorithm = "IA2", results = configs)
}
# find the optimal testing configuration, over all array sizes considered
result.ET <- save.it[save.it[,(max(set.of.I)^2 + 5)] == min(save.it[,(max(set.of.I)^2 + 5)]),
c(1:(max(set.of.I)^2 + 4),(max(set.of.I)^2 + 5),(max(set.of.I)^2 + 13):ncol(save.it))]
result.MAR <- save.it[save.it[,(max(set.of.I)^2 + 6)] == min(save.it[,(max(set.of.I)^2 + 6)]),
c(1:(max(set.of.I)^2 + 4),(max(set.of.I)^2 + 6),(max(set.of.I)^2 + 13):ncol(save.it))]
result.GR1 <- save.it[save.it[,(max(set.of.I)^2 + 7)] == min(save.it[,(max(set.of.I)^2 + 7)]),
c(1:(max(set.of.I)^2 + 4),(max(set.of.I)^2 + 7),(max(set.of.I)^2 + 13):ncol(save.it))]
result.GR2 <- save.it[save.it[,(max(set.of.I)^2 + 8)] == min(save.it[,(max(set.of.I)^2 + 8)]),
c(1:(max(set.of.I)^2 + 4),(max(set.of.I)^2 + 8),(max(set.of.I)^2 + 13):ncol(save.it))]
result.GR3 <- save.it[save.it[,(max(set.of.I)^2 + 9)] == min(save.it[,(max(set.of.I)^2 + 9)]),
c(1:(max(set.of.I)^2 + 4),(max(set.of.I)^2 + 9),(max(set.of.I)^2 + 13):ncol(save.it))]
result.GR4 <- save.it[save.it[,(max(set.of.I)^2 + 10)] == min(save.it[,(max(set.of.I)^2 + 10)]),
c(1:(max(set.of.I)^2 + 4),(max(set.of.I)^2 + 10),(max(set.of.I)^2 + 13):ncol(save.it))]
result.GR5 <- save.it[save.it[,(max(set.of.I)^2 + 11)] == min(save.it[,(max(set.of.I)^2 + 11)]),
c(1:(max(set.of.I)^2 + 4),(max(set.of.I)^2 + 11),(max(set.of.I)^2 + 13):ncol(save.it))]
result.GR6 <- save.it[save.it[,(max(set.of.I)^2 + 12)] == min(save.it[,(max(set.of.I)^2 + 12)]),
c(1:(max(set.of.I)^2 + 4),(max(set.of.I)^2 + 12),(max(set.of.I)^2 + 13):ncol(save.it))]
p.ga.ET <- informativeArrayProb(prob.vec = (result.ET[1:max(set.of.I)^2])[!is.na(result.ET[1:max(set.of.I)^2])],
nr = result.ET[max(set.of.I)^2 + 2],
nc = result.ET[max(set.of.I)^2 + 2],
method = "gd")
if ("MAR" %in% obj.fn) {
p.ga.MAR <- informativeArrayProb(prob.vec = (result.MAR[1:max(set.of.I)^2])[!is.na(result.MAR[1:max(set.of.I)^2])],
nr = result.MAR[max(set.of.I)^2 + 2],
nc = result.MAR[max(set.of.I)^2 + 2],
method = "gd")
} else {p.ga.MAR <- NA}
if (is.null(dim(weights))) {
p.ga.GR1 <- NA
p.ga.GR2 <- NA
p.ga.GR3 <- NA
p.ga.GR4 <- NA
p.ga.GR5 <- NA
p.ga.GR6 <- NA
} else {
p.ga.GR1 <- informativeArrayProb(prob.vec = (result.GR1[1:max(set.of.I)^2])[!is.na(result.GR1[1:max(set.of.I)^2])],
nr = result.GR1[max(set.of.I)^2 + 2],
nc = result.GR1[max(set.of.I)^2 + 2],
method = "gd")
if (dim(weights)[1] >= 2) {
p.ga.GR2 <- informativeArrayProb(prob.vec = (result.GR2[1:max(set.of.I)^2])[!is.na(result.GR2[1:max(set.of.I)^2])],
nr = result.GR2[max(set.of.I)^2 + 2],
nc = result.GR2[max(set.of.I)^2 + 2],
method = "gd")
} else {p.ga.GR2 <- NA}
if (dim(weights)[1] >= 3) {
p.ga.GR3 <- informativeArrayProb(prob.vec = (result.GR3[1:max(set.of.I)^2])[!is.na(result.GR3[1:max(set.of.I)^2])],
nr = result.GR3[max(set.of.I)^2 + 2],
nc = result.GR3[max(set.of.I)^2 + 2],
method = "gd")
} else {p.ga.GR3 <- NA}
if (dim(weights)[1] >= 4) {
p.ga.GR4 <- informativeArrayProb(prob.vec = (result.GR4[1:max(set.of.I)^2])[!is.na(result.GR4[1:max(set.of.I)^2])],
nr = result.GR4[max(set.of.I)^2 + 2],
nc = result.GR4[max(set.of.I)^2 + 2],
method = "gd")
} else {p.ga.GR4 <- NA}
if (dim(weights)[1] >= 5) {
p.ga.GR5 <- informativeArrayProb(prob.vec = (result.GR5[1:max(set.of.I)^2])[!is.na(result.GR5[1:max(set.of.I)^2])],
nr = result.GR5[max(set.of.I)^2 + 2],
nc = result.GR5[max(set.of.I)^2 + 2],
method = "gd")
} else {p.ga.GR5 <- NA}
if (dim(weights)[1] >= 6) {
p.ga.GR6 <- informativeArrayProb(prob.vec = (result.GR6[1:max(set.of.I)^2])[!is.na(result.GR6[1:max(set.of.I)^2])],
nr = result.GR6[max(set.of.I)^2 + 2],
nc = result.GR6[max(set.of.I)^2 + 2],
method = "gd")
} else {p.ga.GR6 <- NA}
}
# put accuracy measures in a matrix for easier display of results
acc.ET <- matrix(data = result.ET[(max(set.of.I)^2 + 6:9)],
nrow = 1, ncol = 4,
dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
acc.MAR <- matrix(data = result.MAR[(max(set.of.I)^2 + 6:9)],
nrow = 1, ncol = 4,
dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
acc.GR1 <- matrix(data = result.GR1[(max(set.of.I)^2 + 6:9)],
nrow = 1, ncol = 4,
dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
acc.GR2 <- matrix(data = result.GR2[(max(set.of.I)^2 + 6:9)],
nrow = 1, ncol = 4,
dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
acc.GR3 <- matrix(data = result.GR3[(max(set.of.I)^2 + 6:9)],
nrow = 1, ncol = 4,
dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
acc.GR4 <- matrix(data = result.GR4[(max(set.of.I)^2 + 6:9)],
nrow = 1, ncol = 4,
dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
acc.GR5 <- matrix(data = result.GR5[(max(set.of.I)^2 + 6:9)],
nrow = 1, ncol = 4,
dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
acc.GR6 <- matrix(data = result.GR6[(max(set.of.I)^2 + 6:9)],
nrow = 1, ncol = 4,
dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
# create a list of results for each objective function
opt.ET <- list("OTC" = list("Array.dim" = result.ET[(max(set.of.I)^2 + 2)],
"Array.sz" = result.ET[(max(set.of.I)^2 + 3)]),
"p.mat" = p.ga.ET, "ET" = result.ET[(max(set.of.I)^2 + 4)],
"value" = result.ET[(max(set.of.I)^2 + 5)],
"Accuracy" = acc.ET)
opt.MAR <- list("OTC" = list("Array.dim" = result.MAR[(max(set.of.I)^2 + 2)],
"Array.sz" = result.MAR[(max(set.of.I)^2 + 3)]),
"p.mat" = p.ga.MAR, "ET" = result.MAR[(max(set.of.I)^2 + 4)],
"value" = result.MAR[(max(set.of.I)^2 + 5)],
"Accuracy" = acc.MAR)
opt.GR1 <- list("OTC" = list("Array.dim" = result.GR1[(max(set.of.I)^2 + 2)],
"Array.sz" = result.GR1[(max(set.of.I)^2 + 3)]),
"p.mat" = p.ga.GR1, "ET" = result.GR1[(max(set.of.I)^2 + 4)],
"value" = result.GR1[(max(set.of.I)^2 + 5)],
"Accuracy" = acc.GR1)
opt.GR2 <- list("OTC" = list("Array.dim" = result.GR2[(max(set.of.I)^2 + 2)],
"Array.sz" = result.GR2[(max(set.of.I)^2 + 3)]),
"p.mat" = p.ga.GR2, "ET" = result.GR2[(max(set.of.I)^2 + 4)],
"value" = result.GR2[(max(set.of.I)^2 + 5)],
"Accuracy" = acc.GR2)
opt.GR3 <- list("OTC" = list("Array.dim" = result.GR3[(max(set.of.I)^2 + 2)],
"Array.sz" = result.GR3[(max(set.of.I)^2 + 3)]),
"p.mat" = p.ga.GR3, "ET" = result.GR3[(max(set.of.I)^2 + 4)],
"value" = result.GR3[(max(set.of.I)^2 + 5)],
"Accuracy" = acc.GR3)
opt.GR4 <- list("OTC" = list("Array.dim" = result.GR4[(max(set.of.I)^2 + 2)],
"Array.sz" = result.GR4[(max(set.of.I)^2 + 3)]),
"p.mat" = p.ga.GR4, "ET" = result.GR4[(max(set.of.I)^2 + 4)],
"value" = result.GR4[(max(set.of.I)^2 + 5)],
"Accuracy" = acc.GR4)
opt.GR5 <- list("OTC" = list("Array.dim" = result.GR5[(max(set.of.I)^2 + 2)],
"Array.sz" = result.GR5[(max(set.of.I)^2 + 3)]),
"p.mat" = p.ga.GR5, "ET" = result.GR5[(max(set.of.I)^2 + 4)],
"value" = result.GR5[(max(set.of.I)^2 + 5)],
"Accuracy" = acc.GR5)
opt.GR6 <- list("OTC" = list("Array.dim" = result.GR6[(max(set.of.I)^2 + 2)],
"Array.sz" = result.GR6[(max(set.of.I)^2 + 3)]),
"p.mat" = p.ga.GR6, "ET" = result.GR6[(max(set.of.I)^2 + 4)],
"value" = result.GR6[(max(set.of.I)^2 + 5)],
"Accuracy" = acc.GR6)
# create input accuracy value matrices for output display
Se.display <- matrix(data = Se, nrow = 1, ncol = 2,
dimnames = list(NULL, "Test" = c("Row/Column",
"Individual")))
Sp.display <- matrix(data = Sp, nrow = 1, ncol = 2,
dimnames = list(NULL, "Test" = c("Row/Column",
"Individual")))
# use below if Se/Sp for row and column testing is allowed to differ
# Se.display <- matrix(data = Se, nrow = 1, ncol = 3,
# dimnames = list(NULL, "Test" = c("Row", "Column",
# "Individual")))
# Sp.display <- matrix(data = Sp, nrow = 1, ncol = 3,
# dimnames = list(NULL, "Test" = c("Row", "Column",
# "Individual")))
# create a list of results, including all objective functions
opt.all <- list("opt.ET" = opt.ET, "opt.MAR" = opt.MAR, "opt.GR1" = opt.GR1,
"opt.GR2" = opt.GR2, "opt.GR3" = opt.GR3, "opt.GR4" = opt.GR4,
"opt.GR5" = opt.GR5, "opt.GR6" = opt.GR6)
# remove any objective functions not requested by the user
opt.req <- Filter(function(x) !is.na(x$ET), opt.all)
# print the time elapsed, if print.time == TRUE
if (print.time) {
time.it(start.time)
}
inputs <- list("algorithm" = "Informative array testing without master pooling",
"prob" = list(p), "alpha" = alpha,
"Se" = Se.display, "Sp" = Sp.display)
res <- c(inputs, opt.req)
res[["Configs"]] <- configs
res
}
###################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.