inst/doc/cross-validation.R

## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## -----------------------------------------------------------------------------
library(data.table)
n.segments <- 10
seg.mean.vec <- 1:n.segments
data.per.segment <- 10
data.mean.vec <- rep(seg.mean.vec, each=data.per.segment)
n.data <- length(data.mean.vec)
n.validation.sets <- 100
n.folds.vec <- c(10, 2)
prop.valid.vec <- 1/n.folds.vec
sim.result.list <- list()
if(interactive()){
  for(data.seed in 1:100){
    set.seed(data.seed)
    data.vec <- rnorm(n.data, data.mean.vec, 0.1)
    is.valid.vec.list <- list()
    for(n.folds in n.folds.vec){
      uniq.folds <- 1:n.folds
      n.seeds <- n.validation.sets/n.folds
      split.type <- sprintf("%d-fold %d times", n.folds, n.seeds)
      for(seed in 1:n.seeds){
        set.seed(seed)
        fold.vec <- sample(rep(uniq.folds, l=n.data))
        for(valid.fold in uniq.folds){
          is.valid.vec.list[[split.type]][[paste(seed, valid.fold)]] <-
            fold.vec==valid.fold
        }
      }
    }
    for(prop.valid in prop.valid.vec){
      split.type <- sprintf("%d%% %d times", 100*prop.valid, n.validation.sets)
      prop.vec <- c(subtrain=1-prop.valid, validation=prop.valid)
      for(split.i in 1:n.validation.sets){
        set.seed(split.i)
        is.valid.vec.list[[split.type]][[split.i]] <- binsegRcpp::random_set_vec(
          n.data, prop.vec) == "validation"
      }
    }
    loss.dt <- CJ(split.i=1:n.validation.sets, type=names(is.valid.vec.list))[, {
      is.valid <- is.valid.vec.list[[type]][[split.i]]
      bs.model <- binsegRcpp::binseg_normal(data.vec, is.validation.vec=is.valid)
      bs.model$splits[, data.table(
        segments,
        validation.loss)]
    }, by=.(split.i, type)]
    loss.stats <- loss.dt[, .(
      mean.valid.loss=mean(validation.loss)
    ), by=.(type, segments)]
    select.each.split <- loss.dt[
    , .SD[which.min(validation.loss)],
      by=.(type, split.i)]
    selected.times <- select.each.split[, .(
      times=.N
    ), by=.(type, segments)]
    selected.segments <- rbind(
      select.each.split[, .(
        selected=min(segments)
      ), by=.(method=paste(type, "min err, min segs"))],
      selected.times[, .(
        selected=segments[which.max(times)]
      ), by=.(method=paste(type, "min err, max times"))],
      loss.stats[, .(
        selected=segments[which.min(mean.valid.loss)]
      ), by=.(method=paste(type, "mean err, min err"))]
    )
    sim.result.list[[data.seed]] <- data.table(
      data.seed, selected.segments, n.segments)
  }
  sim.result <- do.call(rbind, sim.result.list)
  (sim.err <- sim.result[, .(
    zero.one.loss=sum(selected != n.segments),
    L1.loss=sum(abs(selected-n.segments)),
    L2.loss=sum((selected-n.segments)^2)
  ), by=method][order(zero.one.loss)])
  plot(data.vec)
}

## -----------------------------------------------------------------------------
n.segments <- 20
seg.mean.vec <- 1:n.segments
data.per.segment <- 5
data.mean.vec <- rep(seg.mean.vec, each=data.per.segment)
n.data <- length(data.mean.vec)
n.validation.sets <- 200
prop.valid <- c(0.01, 0.05, 0.1, 0.25, 0.5)
if(interactive()){
  sim.result <- data.table(data.seed=1:100)[, {
    set.seed(data.seed)
    data.vec <- rnorm(n.data, data.mean.vec, 0.1)
    select.each.split <- CJ(split.i=1:n.validation.sets, prop.valid)[, {
      set.seed(split.i)
      prop.sets <- c(subtrain=1-prop.valid, validation=prop.valid)
      is.valid <- binsegRcpp::random_set_vec(
        n.data, prop.sets)=="validation"
      bs.model <- binsegRcpp::binseg_normal(
        data.vec, is.validation.vec=is.valid)
      bs.model$splits[, .(selected=segments[which.min(validation.loss)])]
    }, by=.(split.i, prop.valid)]
    data.table(n.splits=1:n.validation.sets)[, {
      select.each.split[split.i <= n.splits, .(
        times=.N
      ),
      by=.(prop.valid, selected)
      ][, .SD[which.max(times), .(selected)], by=prop.valid]
    }, by=n.splits]
  }, by=data.seed]

  if(require(ggplot2)){
    ggplot()+
      scale_color_gradient(low="red", high="black")+
      geom_line(aes(
        n.splits, selected,
        group=paste(data.seed, prop.valid),
        color=prop.valid),
        data=sim.result)+
      scale_y_continuous(breaks=seq(0, 100, by=10))
  }

  accuracy.dt <- sim.result[, .(
    correct=sum(selected==n.segments)
  ), by=.(prop.valid, n.splits)]
  if(require(ggplot2)){
    gg <- ggplot()+
      geom_line(aes(
        n.splits, correct,
        group=prop.valid,
        color=prop.valid),
        size=2,
        data=accuracy.dt)+
      scale_y_continuous("number of correctly chosen data sets")+
      scale_color_gradient(low="red", high="black")
    if(require(directlabels)){
      direct.label(gg, "right.polygons")
    }else{
      gg
    }
  }
}

Try the binsegRcpp package in your browser

Any scripts or data that you put into this service are public.

binsegRcpp documentation built on Sept. 8, 2023, 6:11 p.m.