dccm.gnm | R Documentation |
Calculate the cross-correlation matrix from Gaussian network model normal modes analysis.
## S3 method for class 'gnm'
dccm(x, ...)
## S3 method for class 'egnm'
dccm(x, ...)
x |
an object of class ‘gnm’ or ‘egnm’ as obtained from
|
... |
additional arguments (currently ignored). |
This function calculates the cross-correlation matrix from Gaussian network
model (GNM) normal modes analysis (NMA) obtained from gnm
. It returns
a matrix of residue-wise cross-correlations whose elements, Cij, may be
displayed in a graphical representation frequently termed a dynamical
cross-correlation map, or DCCM. (See more details in help(dccm.nma)
).
Returns a cross-correlation matrix.
Xin-Qiu Yao & Lars Skjaerven
Bahar, I. et al. (1997) Folding Des. 2, 173.
gnm
, dccm.nma
, dccm.enma
,
plot.dccm
.
if(!requireNamespace("lattice", quietly=TRUE)) {
message("Need lattice installed to run this example")
} else {
## Fetch stucture
pdb <- read.pdb( system.file("examples/1hel.pdb", package="bio3d") )
## Calculate normal modes
modes <- gnm(pdb)
## Calculate correlation matrix
cm <- dccm(modes)
## Plot correlation map
plot(cm, sse = pdb, contour = FALSE, col.regions = bwr.colors(20),
at = seq(-1, 1, 0.1))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.