dccm.pca | R Documentation |
Calculate the cross-correlation matrix from principal component analysis (PCA).
## S3 method for class 'pca'
dccm(x, pc = NULL, method = c("pearson", "lmi"), ncore = NULL, ...)
x |
an object of class |
pc |
numerical, indices of PCs to be included in the calculation.
If all negative, PCs complementary to |
method |
method to calculate the cross-correlation. Currently supports Pearson and linear mutual information (LMI). |
ncore |
number of CPU cores used to do the calculation.
By default ( |
... |
Additional arguments to be passed (currently ignored). |
This function calculates the cross-correlation matrix from principal
component analysis (PCA) obtained from pca.xyz
of a set of protein
structures. It is an alternative way to calculate correlation in addition
to the conventional way from xyz coordinates directly. But, in this new
way one can freely chooses the PCs to be included in the
calculation (e.g. for filtering out PCs with small eigenvalues).
Returns a cross-correlation matrix with values in a range from -1 to 1 (Pearson) or from 0 to 1 (LMI).
Xin-Qiu Yao
Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.
pca.xyz
, plot.dccm
, dccm
,
dccm.xyz
, dccm.nma
, dccm.enma
.
if(!requireNamespace("lattice", quietly=TRUE)) {
message("Need lattice installed to run this example")
} else {
##-- Read example trajectory file
trtfile <- system.file("examples/hivp.dcd", package="bio3d")
trj <- read.dcd(trtfile)
## Read the starting PDB file to determine atom correspondence
pdbfile <- system.file("examples/hivp.pdb", package="bio3d")
pdb <- read.pdb(pdbfile)
## Select residues 24 to 27 and 85 to 90 in both chains
inds <- atom.select(pdb, resno=c(24:27,85:90), elety='CA')
## lsq fit of trj on pdb
xyz <- fit.xyz(pdb$xyz, trj, fixed.inds=inds$xyz, mobile.inds=inds$xyz)
## Do PCA
pca <- pca.xyz(xyz)
## DCCM: only use first 10 PCs
cij <- dccm(pca, pc = c(1:10))
## Plot DCCM
plot(cij)
## DCCM: remove first 10 PCs
cij <- dccm(pca, pc = -c(1:10))
## Plot DCCM
plot(cij)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.