Nothing
#' Stepwise forward regression
#'
#' @description
#' Build regression model from a set of candidate predictor variables by
#' entering predictors based on p values, in a stepwise manner until there is
#' no variable left to enter any more.
#'
#' @param model An object of class \code{lm}; the model should include all
#' candidate predictor variables.
#' @param penter p value; variables with p value less than \code{penter} will
#' enter into the model
#' @param details Logical; if \code{TRUE}, will print the regression result at
#' each step.
#' @param x An object of class \code{blr_step_p_forward}.
#' @param print_plot logical; if \code{TRUE}, prints the plot else returns a plot object.
#' @param ... Other arguments.
#'
#' @return \code{blr_step_p_forward} returns an object of class \code{"blr_step_p_forward"}.
#' An object of class \code{"blr_step_p_forward"} is a list containing the
#' following components:
#'
#' \item{model}{model with the least AIC; an object of class \code{glm}}
#' \item{steps}{number of steps}
#' \item{predictors}{variables added to the model}
#' \item{aic}{akaike information criteria}
#' \item{bic}{bayesian information criteria}
#' \item{dev}{deviance}
#' \item{indvar}{predictors}
#'
#' @references
#' Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.
#'
#' Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition).
#' Chicago, IL., McGraw Hill/Irwin.
#'
#'
#' @examples
#' \dontrun{
#' # stepwise forward regression
#' model <- glm(honcomp ~ female + read + science, data = hsb2,
#' family = binomial(link = 'logit'))
#' blr_step_p_forward(model)
#'
#' # stepwise forward regression plot
#' model <- glm(honcomp ~ female + read + science, data = hsb2,
#' family = binomial(link = 'logit'))
#' k <- blr_step_p_forward(model)
#' plot(k)
#'
#' # final model
#' k$model
#'
#' }
#'
#' @importFrom stats qt
#' @importFrom car Anova
#'
#' @family variable selection procedures
#'
#' @export
#'
blr_step_p_forward <- function(model, ...) UseMethod("blr_step_p_forward")
#' @export
#' @rdname blr_step_p_forward
#'
blr_step_p_forward.default <- function(model, penter = 0.3, details = FALSE, ...) {
blr_check_model(model)
blr_check_logic(details)
blr_check_npredictors(model, 3)
blr_check_values(penter, 0, 1)
l <- model$data
nam <- colnames(attr(model$terms, "factors"))
df <- nrow(l) - 2
tenter <- qt(1 - (penter) / 2, df)
n <- ncol(l)
response <- names(model$model)[1]
all_pred <- nam
cterms <- all_pred
mlen_p <- length(all_pred)
step <- 1
ppos <- step
preds <- c()
pvals <- c()
tvals <- c()
aic <- c()
bic <- c()
dev <- c()
cat(format("Forward Selection Method", justify = "left", width = 27), "\n")
cat(rep("-", 27), sep = "", "\n\n")
cat(format("Candidate Terms:", justify = "left", width = 16), "\n\n")
for (i in seq_len(length(nam))) {
cat(paste0(i, ". ", nam[i]), "\n")
}
cat("\n")
cat("We are selecting variables based on p value...")
cat("\n")
cat("\n")
if (!details) {
cat("Variables Entered:", "\n\n")
}
for (i in seq_len(mlen_p)) {
predictors <- all_pred[i]
m <- glm(paste(response, "~", paste(predictors, collapse = " + ")),
l, family = binomial(link = 'logit'))
m_sum <- Anova(m, test.statistic = "Wald")
pvals[i] <- m_sum$`Pr(>Chisq)`[ppos]
tvals[i] <- m_sum$Chisq[ppos]
}
minp <- which(pvals == min(pvals))
# tvals <- abs(tvals)
# maxt <- which(tvals == max(tvals))
preds <- all_pred[minp]
lpreds <- length(preds)
fr <- glm(paste(response, "~", paste(preds, collapse = " + ")), l, family = binomial(link = 'logit'))
mfs <- blr_model_fit_stats(fr)
aic <- mfs$m_aic
bic <- mfs$m_bic
dev <- mfs$m_deviance
if (details) {
cat("\n")
cat(paste("Forward Selection: Step", step), "\n\n")
}
if (interactive()) {
cat(paste("-", rev(preds)[1]), "\n")
} else {
cat(paste("-", rev(preds)[1]), "\n")
}
if (details) {
cat("\n")
m <- blr_regress(paste(response, "~", paste(preds, collapse = " + ")), l)
print(m)
cat("\n\n")
}
while (step < mlen_p) {
all_pred <- all_pred[-minp]
len_p <- length(all_pred)
ppos <- ppos + length(minp)
pvals <- c()
tvals <- c()
for (i in seq_len(len_p)) {
predictors <- c(preds, all_pred[i])
m <- glm(paste(response, "~", paste(predictors, collapse = " + ")), l, family = binomial(link = 'logit'))
m_sum <- Anova(m, test.statistic = "Wald")
pvals[i] <- m_sum$`Pr(>Chisq)`[ppos]
tvals[i] <- m_sum$Chisq[ppos]
}
minp <- which(pvals == min(pvals))
if (pvals[minp] <= penter) {
step <- step + 1
preds <- c(preds, all_pred[minp])
lpreds <- length(preds)
fr <- glm(paste(response, "~",
paste(preds, collapse = " + ")), l, family = binomial(link = 'logit'))
mfs <- blr_model_fit_stats(fr)
aic <- c(aic, mfs$m_aic)
bic <- c(bic, mfs$m_bic)
dev <- c(dev, mfs$m_deviance)
if (details) {
cat("\n")
cat(paste("Forward Selection: Step", step), "\n\n")
}
if (interactive()) {
cat(paste("-", rev(preds)[1]), "\n")
} else {
cat(paste("-", rev(preds)[1]), "\n")
}
if (details) {
cat("\n")
m <- blr_regress(paste(response, "~", paste(preds, collapse = " + ")), l)
print(m)
cat("\n\n")
}
} else {
cat("\n")
cat("No more variables to be added.")
break
}
}
if (details == TRUE) {
cat("\n\n")
cat("Variables Entered:", "\n\n")
for (i in seq_len(length(preds))) {
if (interactive()) {
cat(paste("+", preds[i]), "\n")
} else {
cat(paste("+", preds[i]), "\n")
}
}
}
cat("\n\n")
cat("Final Model Output", "\n")
cat(rep("-", 18), sep = "", "\n\n")
fi <- blr_regress(
paste(response, "~", paste(preds, collapse = " + ")),
data = l
)
print(fi)
final_model <- glm(paste(response, "~", paste(preds, collapse = " + ")),
data = l, family = binomial(link = 'logit'))
out <- list(predictors = preds,
indvar = cterms,
steps = step,
bic = bic,
aic = aic,
dev = dev,
model = final_model)
class(out) <- "blr_step_p_forward"
return(out)
}
#' @export
#'
print.blr_step_p_forward <- function(x, ...) {
if (x$steps > 0) {
print_step_forward(x)
} else {
print("No variables have been added to the model.")
}
}
#' @export
#' @rdname blr_step_p_forward
#'
plot.blr_step_p_forward <- function(x, model = NA, print_plot = TRUE, ...) {
a <- NULL
b <- NULL
y <- seq_len(length(x$aic))
d4 <- data.frame(a = y, b = x$aic)
d5 <- data.frame(a = y, b = x$bic)
d6 <- data.frame(a = y, b = x$dev)
p4 <- plot_stepwise(d4, "AIC")
p5 <- plot_stepwise(d5, "BIC")
p6 <- plot_stepwise(d6, "Deviance")
myplots <- list(aic = p4, bic = p5, deviance = p6)
if (print_plot) {
gridExtra::marrangeGrob(myplots, nrow = 2, ncol = 2)
}
invisible(myplots)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.