demo/script_univariado_100.R

## Load packages ---------------------------------------------------------------

library(tidyverse)
devtools::load_all()

## Simulated Example -----------------------------------------------------------
set.seed(1)
n_repeticoes <- 100

simular <- function() {
  d_sim <- ltm_sim(
    ns = 500, nk = 2, ni = 1,
    vmu = matrix(c(.5,.5), nrow = 2),
    mPhi = diag(2) * c(.99, .99),
    mSigs = c(.1,.1),
    dsig = .15,
    vd = matrix(c(.4,.4), nrow = 2),
    alpha = 0
  )
  binder <- array(runif(500)-.5, c(1, 500, 1))
  d_sim$mx <- abind::abind(d_sim$mx, binder, along = 3)
  d_sim$mb <- cbind(d_sim$mb, 0)
  d_sim
}

simulacoes <- tibble(
  id = seq_len(n_repeticoes),
  sim = rerun(n_repeticoes, simular())
)

ajustar <- function(i) {
  d_sim <- with(simulacoes, sim[[i]])
  res <- ltm_mcmc(d_sim$mx, d_sim$vy, burnin = 1000, iter = 5000, K = 3)
  l <- tibble(id = i, data = list(d_sim), result = list(res))
}

abjutils::pvec(seq_len(n_repeticoes), ajustar)

# ------------------------------------------------------------------------------
resultados_carregados <- fs::dir_ls("data-raw/results_univariate/") %>%
  purrr::map_dfr(readr::read_rds)

# tabelas resumo ---------------------------------------------------------------
# deixei explicito para ficar facil de editar, caso queira

fazer_tabelas <- function(a) {
  true <- tibble::tribble(
    ~key, ~p, ~true_value,
    "d", 1, .4,
    "d", 2, .4,
    "d", 3, .4,
    "mu", 1, .5,
    "mu", 2, .5,
    "mu", 3, .0,
    "phi", 1, .99,
    "phi", 2, .99,
    "phi", 3, .99,
    "sig_eta", 1, .10,
    "sig_eta", 2, .10,
    "sig_eta", 3, .10,
    "sig", 1, .15,
    "alpha", 1, 0
  )
  a[,!str_detect(colnames(a), "beta\\[")] %>%
    as.data.frame() %>%
    tibble::as_tibble() %>%
    tibble::rowid_to_column() %>%
    tidyr::gather(key, val, -rowid) %>%
    dplyr::group_by(key) %>%
    dplyr::summarise(
      mediana = median(val),
      sd = sd(val),
      q025 = quantile(val, 0.025),
      q975 = quantile(val, 0.975)
    ) %>%
    dplyr::mutate(
      p = as.numeric(stringr::str_extract(key, "[0-9]+(?=\\])")),
      key = stringr::str_extract(key, "[a-z_]+"),
      is_alpha = stringr::str_detect(key, "alpha|sig$")
    ) %>%
    dplyr::arrange(key, p) %>%
    dplyr::select(key, p, dplyr::everything()) %>%
    dplyr::inner_join(true, c("key", "p"))
}

entre <- function(x, left, right) {
  mean(purrr::map2_lgl(left, right, ~dplyr::between(x[1], .x, .y)))
}

tabelas <- resultados_carregados$result %>%
  purrr::map_dfr(fazer_tabelas, .id = "rep_id") %>%
  dplyr::group_by(key, p, is_alpha, true_value) %>%
  dplyr::summarise(
    n_rep = n(),
    media_mediana = mean(mediana),
    media_sd = mean(sd),
    prop_intervalo = entre(true_value, q025, q975)
  ) %>%
  dplyr::ungroup() %>%
  dplyr::group_split(is_alpha, keep = FALSE)


knitr::kable(tabelas[[1]])
knitr::kable(tabelas[[2]])

# graficos betas ---------------------------------------------------------------
grafico_betas(a, 1, real_values = res$data[[1]])
grafico_betas(a, 1:2, real_values = res$data[[1]])
grafico_betas(a, 1:3, real_values = res$data[[1]])

# MCMC traces ------------------------------------------------------------------
# colocar os indices ao lado do \\[ se desejar pegar algum especifico
bayesplot::mcmc_trace(a, regex_pars = "alpha\\[")
bayesplot::mcmc_trace(a, regex_pars = "phi\\[")
bayesplot::mcmc_trace(a, regex_pars = "d\\[")
bayesplot::mcmc_trace(a, regex_pars = "mu\\[")
bayesplot::mcmc_trace(a, regex_pars = "sig_eta\\[")
bayesplot::mcmc_trace(a, regex_pars = "sig\\[")

Try the bltm package in your browser

Any scripts or data that you put into this service are public.

bltm documentation built on July 18, 2019, 9:06 a.m.