Nothing
subgroup <- function() {
n_group <- 2L
n_subgroup <- 2L
n_patient <- 150L
n_time <- 3L
data <- brms.mmrm::brm_simulate_outline(
n_group = n_group,
n_subgroup = n_subgroup,
n_patient = n_patient,
n_time = n_time,
rate_dropout = 0.3,
rate_lapse = 0.08
) |>
brms.mmrm::brm_simulate_continuous(
names = c("continuous1", "continuous2")
) |>
brms.mmrm::brm_simulate_categorical(
names = "balanced",
levels = c("level1", "level2", "level3")
) |>
brms.mmrm::brm_simulate_categorical(
names = "unbalanced",
levels = c("level1", "level2", "level3"),
probabilities = c(0.64, 0.26, 0.1)
)
data[[attr(data, "brm_outcome")]] <- seq_len(nrow(data))
formula <- brms.mmrm::brm_formula(
data = data,
intercept = TRUE,
group = TRUE,
time = TRUE,
group_time = TRUE,
subgroup = TRUE,
group_subgroup = TRUE,
group_subgroup_time = TRUE,
covariates = TRUE,
correlation = "unstructured"
)
list(data = data, formula = formula, simulate = simulate_unstructured)
}
unstructured <- function() {
n_group <- 3L
n_patient <- 100L
n_time <- 4L
data <- brms.mmrm::brm_simulate_outline(
n_group = n_group,
n_patient = n_patient,
n_time = n_time,
rate_dropout = 0,
rate_lapse = 0
)
data[[attr(data, "brm_outcome")]] <- seq_len(nrow(data))
formula <- brms.mmrm::brm_formula(
data = data,
intercept = FALSE,
baseline = FALSE,
group = TRUE,
time = TRUE,
baseline_time = FALSE,
group_time = FALSE,
covariates = FALSE,
correlation = "unstructured"
)
list(data = data, formula = formula, simulate = simulate_unstructured)
}
autoregressive_moving_average <- function() {
n_group <- 2L
n_patient <- 100L
n_time <- 3L
data <- brms.mmrm::brm_simulate_outline(
n_group = n_group,
n_patient = n_patient,
n_time = n_time,
rate_dropout = 0,
rate_lapse = 0
)
data[[attr(data, "brm_outcome")]] <- seq_len(nrow(data))
formula <- brms.mmrm::brm_formula(
data = data,
intercept = FALSE,
baseline = FALSE,
group = TRUE,
time = TRUE,
baseline_time = FALSE,
group_time = FALSE,
covariates = FALSE,
correlation = "autoregressive_moving_average",
autoregressive_order = 1L,
moving_average_order = 1L
)
list(data = data, formula = formula, simulate = simulate_arma11)
}
autoregressive <- function() {
n_group <- 2L
n_patient <- 100L
n_time <- 3L
data <- brms.mmrm::brm_simulate_outline(
n_group = n_group,
n_patient = n_patient,
n_time = n_time,
rate_dropout = 0,
rate_lapse = 0
)
data[[attr(data, "brm_outcome")]] <- seq_len(nrow(data))
formula <- brms.mmrm::brm_formula(
data = data,
intercept = FALSE,
baseline = FALSE,
group = TRUE,
time = TRUE,
baseline_time = FALSE,
group_time = FALSE,
covariates = FALSE,
correlation = "autoregressive",
autoregressive_order = 2L
)
list(data = data, formula = formula, simulate = simulate_ar2)
}
moving_average <- function() {
n_group <- 2L
n_patient <- 100L
n_time <- 3L
data <- brms.mmrm::brm_simulate_outline(
n_group = n_group,
n_patient = n_patient,
n_time = n_time,
rate_dropout = 0,
rate_lapse = 0
)
data[[attr(data, "brm_outcome")]] <- seq_len(nrow(data))
formula <- brms.mmrm::brm_formula(
data = data,
intercept = FALSE,
baseline = FALSE,
group = TRUE,
time = TRUE,
baseline_time = FALSE,
group_time = FALSE,
covariates = FALSE,
correlation = "moving_average",
moving_average_order = 2L
)
list(data = data, formula = formula, simulate = simulate_ma2)
}
compound_symmetry <- function() {
n_group <- 2L
n_patient <- 100L
n_time <- 3L
data <- brms.mmrm::brm_simulate_outline(
n_group = n_group,
n_patient = n_patient,
n_time = n_time,
rate_dropout = 0,
rate_lapse = 0
)
data[[attr(data, "brm_outcome")]] <- seq_len(nrow(data))
formula <- brms.mmrm::brm_formula(
data = data,
intercept = FALSE,
baseline = FALSE,
group = TRUE,
time = TRUE,
baseline_time = FALSE,
group_time = FALSE,
covariates = FALSE,
correlation = "compound_symmetry"
)
list(data = data, formula = formula, simulate = simulate_compound_symmetry)
}
diagonal <- function() {
n_group <- 2L
n_patient <- 100L
n_time <- 3L
data <- brms.mmrm::brm_simulate_outline(
n_group = n_group,
n_patient = n_patient,
n_time = n_time,
rate_dropout = 0,
rate_lapse = 0
)
data[[attr(data, "brm_outcome")]] <- seq_len(nrow(data))
formula <- brms.mmrm::brm_formula(
data = data,
intercept = FALSE,
baseline = FALSE,
group = TRUE,
time = TRUE,
baseline_time = FALSE,
group_time = FALSE,
covariates = FALSE,
correlation = "diagonal",
sigma = brms.mmrm::brm_formula_sigma(
data,
intercept = TRUE,
group = TRUE,
group_time = TRUE,
time = TRUE
)
)
list(data = data, formula = formula, simulate = simulate_diagonal)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.