demo/Example_4.R

##############################################################
#Example 4
#Gianola et al. (2011).
#Warning, it will take a while, substitute the FALSE
#statement with the TRUE statement if you really want to run the example

#This example uses the formula interface for the fitting

#Load the Jersey dataset
data(Jersey)
  
#Fit the model with the FULL DATA
#Formula interface
out=brnn(pheno$yield_devMilk~G,neurons=2,verbose=TRUE)
  
#Obtain predictions and plot them against fitted values
plot(pheno$yield_devMilk,predict(out))
  
#Predictive power of the model using the SECOND set for 10 fold CROSS-VALIDATION
data=pheno
data$X=G
data$partitions=partitions
  
#Fit the model for the TESTING DATA
out=brnn(yield_devMilk~X,
         data=subset(data,partitions!=2),neurons=2,verbose=TRUE)
           
#Plot the results
#Predicted vs observed values for the training set
par(mfrow=c(2,1))
plot(out$y,predict(out),xlab=expression(hat(y)),ylab="y")
cor(out$y,predict(out))
  
#Predicted vs observed values for the testing set
yhat_R_testing=predict(out,newdata=subset(data,partitions==2))
ytesting=pheno$yield_devMilk[partitions==2]
plot(ytesting,yhat_R_testing,xlab=expression(hat(y)),ylab="y")
cor(ytesting,yhat_R_testing)


#This example uses the default method for the call

#Load the Jersey dataset
data(Jersey)
  
#Fit the model with the FULL DATA
out=brnn(y=pheno$yield_devMilk,x=G,neurons=2,verbose=TRUE)

#Obtain predictions and plot them against fitted values
plot(pheno$yield_devMilk,predict(out))

#Predictive power of the model using the SECOND set for 10 fold CROSS-VALIDATION
index=partitions==2
Xtraining=G[!index,]
ytraining=pheno$yield_devMilk[!index]
Xtesting=G[index,]
ytesting=pheno$yield_devMilk[index]

#Fit the model for the TESTING DATA
out=brnn(y=ytraining,x=Xtraining,neurons=2,verbose=TRUE)

#Plot the results
#Predicted vs observed values for the training set
par(mfrow=c(2,1))
yhat_R_training=predict(out)
plot(ytraining,yhat_R_training,xlab=expression(hat(y)),ylab="y")
cor(ytraining,yhat_R_training)
  
#Predicted vs observed values for the testing set
yhat_R_testing=predict(out,Xtesting)
plot(ytesting,yhat_R_testing,xlab=expression(hat(y)),ylab="y")
cor(ytesting,yhat_R_testing)

Try the brnn package in your browser

Any scripts or data that you put into this service are public.

brnn documentation built on Sept. 10, 2021, 1:06 a.m.