R/spdep-tidiers.R

Defines functions glance.sarlm augment.sarlm tidy.sarlm

Documented in augment.sarlm glance.sarlm tidy.sarlm

#' Tidying methods for spatially autoregressive models
#'
#' These methods tidy the coefficients of spatial autoregression
#' models generated by functions in the `spatialreg` package.
#'
#' @param x An object returned from [spatialreg::lagsarlm()] 
#' or [spatialreg::errorsarlm()].
#' @template param_confint
#' @template param_unused_dots
#' 
#' @evalRd return_tidy(regression = TRUE)
#' 
# skip running examples - occasionally over CRAN check time limit
#' @examplesIf (rlang::is_installed("spdep") & rlang::is_installed("spatialreg") && identical(Sys.getenv("NOT_CRAN"), "true"))
#' 
#'       
#' # load libraries for models and data      
#' library(spatialreg)
#' library(spdep)
#' 
#' # load data
#' data(oldcol, package = "spdep")
#' 
#' listw <- nb2listw(COL.nb, style = "W")
#' 
#' # fit model
#' crime_sar <- 
#' lagsarlm(CRIME ~ INC + HOVAL, 
#'          data = COL.OLD,  
#'          listw = listw, 
#'          method = "eigen")
#'   
#' # summarize model fit with tidiers
#' tidy(crime_sar)
#' tidy(crime_sar, conf.int = TRUE)
#' glance(crime_sar)
#' augment(crime_sar)
#' 
#' # fit another model
#' crime_sem <- errorsarlm(CRIME ~ INC + HOVAL, data = COL.OLD, listw)
#' 
#' # summarize model fit with tidiers
#' tidy(crime_sem)
#' tidy(crime_sem, conf.int = TRUE)
#' glance(crime_sem)
#' augment(crime_sem)
#' 
#' # fit another model
#' crime_sac <- sacsarlm(CRIME ~ INC + HOVAL, data = COL.OLD, listw)
#' 
#' # summarize model fit with tidiers
#' tidy(crime_sac)
#' tidy(crime_sac, conf.int = TRUE)
#' glance(crime_sac)
#' augment(crime_sac)
#' 
#' @aliases spatialreg_tidiers
#' @export
#' @family spatialreg tidiers
#' @seealso [tidy()], [spatialreg::lagsarlm()], [spatialreg::errorsarlm()], 
#' [spatialreg::sacsarlm()]
tidy.sarlm <- function(x, conf.int = FALSE, conf.level = .95, ...) {
  check_ellipses("exponentiate", "tidy", "sarlm", ...)
  
  # construct parameter table
  s <- summary(x)
  ret <- as_tidy_tibble(
    coef(s),
    new_names = c("estimate", "std.error", "statistic", "p.value")
  )
  
  # append spatial autoregression coefficient to parameter table if it exists
  if (!is.null(s$rho)) {
    rho <- tibble(
        term = "rho",
        estimate = as.numeric(s$rho),
        std.error = as.numeric(s$rho.se),
        statistic = as.numeric(estimate / std.error),
        p.value = as.numeric(2 * (1 - pnorm(abs(statistic))))
      )
    ret <- bind_rows(rho, ret)
  }
  
  # append spatial error coefficient to parameter table if it exists
  if (!is.null(s$lambda))  {
    lambda <- tibble(
      term = "lambda",
      estimate = as.numeric(s$lambda),
      std.error = as.numeric(s$lambda.se),
      statistic = as.numeric(estimate / std.error),
      p.value = as.numeric(2 * (1 - pnorm(abs(statistic))))
    )
    ret <- bind_rows(ret, lambda)
  }
  
  
  
  # Calculate confidence interval
  if (conf.int) {
    ci <- broom_confint_terms(x, level = conf.level)
    ret <- dplyr::left_join(ret, ci, by = "term")
  }
  
  ret
}

#' @templateVar class spatialreg
#' @template title_desc_augment
#'
#' @evalRd return_augment(".fitted", ".resid")
#'
#' @inherit tidy.sarlm params examples
#' @param data Ignored, but included for internal consistency. See the details
#' below.
#'
#' @details 
#' The predict method for sarlm objects assumes that the response is 
#' known. See ?predict.sarlm for more discussion. As a result, since the
#' original data can be recovered from the fit object, this method
#' currently does not take in `data` or `newdata` arguments.
#'
#' @export
#' @seealso [augment()]
#' @family spatialreg tidiers
augment.sarlm <- function(x, data = x$X, ...) {
  
  observed_name <- all.vars(x$call$formula)[1]
  
  reg <- x$X %>%
    as_augment_tibble() %>%
    dplyr::select(-.rownames) %>%
    dplyr::mutate(
      !!observed_name := x$y,
      .fitted = x$fitted.values,
      .resid = x$residuals
    )

  reg

}


#' @templateVar class spatialreg
#' @template title_desc_glance
#' 
#' @inherit tidy.sarlm params examples
#' 
#' @evalRd return_glance(
#'   "logLik", 
#'   "AIC", 
#'   "BIC",
#'   "deviance", 
#'   "logLik", 
#'   "nobs"
#' )
#' @export
#' @family spatialreg tidiers
#' @seealso [glance()], [spatialreg::lagsarlm()], [spatialreg::errorsarlm()], 
#' [spatialreg::sacsarlm()]
glance.sarlm <- function(x, ...) {
  
  res <- as_glance_tibble(
      # Using Pseudo R squared.
      r.squared = stats::cor(x$fitted.values, x$y)^2,
      AIC = stats::AIC(x),
      BIC = stats::BIC(x),
      deviance = stats::deviance(x),
      logLik = as.numeric(x$LL),
      nobs = length(x$fitted.values),
      na_types = "rrrrri"
    )
  
  res
}

# re-export each of them following the change in class sarlm -> Sarlm --------

#' @export
#' @family spatialreg tidiers
tidy.Sarlm <- tidy.sarlm

#' @export
#' @family spatialreg tidiers
glance.Sarlm <- glance.sarlm 

#' @export
#' @family spatialreg tidiers
augment.Sarlm <- augment.sarlm 

Try the broom package in your browser

Any scripts or data that you put into this service are public.

broom documentation built on Aug. 30, 2022, 1:07 a.m.