Nothing
context("car")
skip_on_cran()
skip_if_not_installed("modeltests")
library(modeltests)
skip_if_not_installed("survival")
library(survival)
skip_if_not_installed("car")
test_that("tidy.durbinWatsonTest", {
check_arguments(tidy.durbinWatsonTest)
dw <- car::durbinWatsonTest(lm(mpg ~ wt, data = mtcars))
td <- tidy(dw)
gl <- glance(dw)
check_tidy_output(td)
check_glance_outputs(gl)
check_dims(td, 1, 5)
})
test_that("tidy.leveneTest", {
skip_if_not_installed("carData")
mod1 <- with(carData::Moore, leveneTest(conformity, fcategory))
mod2 <- with(carData::Moore, leveneTest(conformity, interaction(fcategory, partner.status)))
mod3 <- leveneTest(conformity ~ fcategory * partner.status, data = Moore)
mod4 <- leveneTest(lm(conformity ~ fcategory * partner.status, data = Moore))
mod5 <- leveneTest(conformity ~ fcategory * partner.status, data = Moore, center = mean)
mod6 <- leveneTest(conformity ~ fcategory * partner.status, data = Moore, center = mean, trim = 0.1)
# This is a tidy method, but the model object is very simple and the output
# is a 1-row tibble with `df` and `df.residual` columns. `tidy.htest` and
# `glance.htest` also return the same things.
check_glance_outputs(
tidy(mod1),
tidy(mod2),
tidy(mod3),
tidy(mod4),
tidy(mod5),
tidy(mod6)
)
})
test_that("tidy car::Anova glm", {
fit <- glm(am ~ mpg, mtcars, family = "binomial")
fit2 <- glm(am ~ mpg + wt, mtcars, family = "binomial")
car_anova <- car::Anova(fit, test.statistic = "LR")
car_anova2 <- car::Anova(fit2, test.statistic = "LR")
td <- tidy(car_anova)
td2 <- tidy(car_anova2)
check_tidy_output(td)
check_tidy_output(td2)
check_dims(td, expected_rows = 1, expected_cols = 4)
check_dims(td2, expected_rows = 2, expected_cols = 4)
})
test_that("tidy car::Anova coxph", {
fit <- coxph(Surv(time, status) ~ differ, data = colon)
fit2 <- coxph(Surv(time) ~ differ, data = colon)
fit3 <- coxph(Surv(time) ~ differ + extent, data = colon)
car_anova_coxph <- car::Anova(fit)
car_anova_coxph2 <- car::Anova(fit2)
car_anova_coxph3 <- car::Anova(fit3)
td <- tidy(car_anova_coxph)
td2 <- tidy(car_anova_coxph2)
td3 <- tidy(car_anova_coxph3)
check_tidy_output(td)
check_tidy_output(td2)
check_tidy_output(td3)
check_dims(td, expected_rows = 2, expected_cols = 5)
check_dims(td2, expected_rows = 2, expected_cols = 5)
check_dims(td3, expected_rows = 2, expected_cols = 4)
})
test_that("tidy car::linearHypothesis with long formulas (#1171)", {
reg_long <-
lm(
Fertility ~ Agriculture + Examination + Education + Catholic + Infant.Mortality,
data = swiss
)
test_long <- car::linearHypothesis(reg_long, hypothesis.matrix = c(0,1, 0, 0, 0, -1))
td <- broom::tidy(test_long)
check_dims(td, expected_rows = 1, expected_cols = 10)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.