inst/unitTests/runit.bspline.R

library(RUnit)
library(bspline)
x010=c(seq(0, 1, by=0.2), seq(0.8, 0, by=-0.2))
x100=c(seq(1, 0, by=-0.2), 0, 0, 0, 0, 0)
x001=rev(x100)
test.ipk=function() {
  x=seq(0, 2, len=11L)
  checkEqualsNumeric(ipk(x, 0:1), t(t(c(0, 6)))) # and not (0,11) as before
}
test.bsc0=function() {
  x=seq(0, 2, len=11L)
  v=c(rep(1, 5), rep(0, 6))
  checkEqualsNumeric(bsc(x, 0:1, n=0L), rev(1-v))
  checkEqualsNumeric(bsc(x, 0:2, n=0L), cbind(v, 1-v))
  checkEqualsNumeric(bsc(x, -1:3, n=0L), cbind(0,v, 1-v,0))
  checkEqualsNumeric(bsc(x, c(0, 0:2, 2), n=0L), cbind(0,v, 1-v,0))
  checkEqualsNumeric(bsc(x, c(0, 0:1, 1, 1:2, 2), n=0L), cbind(
    0,
    v,
    0.,
    0,
    1-v,
    0
  ))
}
test.bsc1=function() {
  x=seq(0, 2, len=11)
  checkEqualsNumeric(bsc(x, 0:2, n=1L), x010)
  checkEqualsNumeric(bsc(x, 0:2, n=1L, cjac=TRUE)$jac[,,1L], cbind(-x100, c(-x010[1:5], x010[6:11]), x001))
  checkEqualsNumeric(bsc(x, -1:3, n=1L), cbind(x100, x010, x001))
  checkEqualsNumeric(bsc(x, c(0, 0:2, 2), n=1L), cbind(x100, x010, x001))
  checkEqualsNumeric(bsc(x, c(0, 0:1, 1, 1:2, 2), n=1L), cbind(
    x100,
    c(seq(0, 0.8, by=0.2), rep(0, 6L)),
    0.,
    c(rep(0, 5L), seq(1, 0, by=-0.2)),
    x001
  ))
}
test.bsc2=function() {
  x=seq(0, 3, len=13L)
  x1=(x**2/2.)[1:5]
  x2=0.75-c(x[2]**2, 0., x[2]**2)
  checkEqualsNumeric(bsc(x, 0:3, n=2L), c(x1, x2, rev(x1)))
  j2=bsc(x, 0:3, n=2L, cjac=TRUE)$jac[,,1L]
  checkEqualsNumeric(j2[,1:2], -rev(j2[,3:4]))
  checkEqualsNumeric(bsc(x, c(1,1:3), n=2L), c(rep(0, 5), 0.40625, 0.625, 0.65625, rev(x1)))
}
test.smbsp3=function() {
  x=seq(0, 1, len=11L)
  y=1+2*x+3*x**2+4*x**3
  f=smbsp(x, y, nki=0L)
  checkEqualsNumeric(y, f(x))
  checkEqualsNumeric(1, f(0))
  checkEqualsNumeric(2, dbsp(f)(0))
  checkEqualsNumeric(6, dbsp(f, 2)(0))
  checkEqualsNumeric(24, dbsp(f, 3)(0))
}
test.jacw2=function() {
  x=seq(0, 4, len=13L)
  j2=bsc(x, 0:4, n=2L, cjac=TRUE)$jac
  checkEqualsNumeric(j2[1:10,1:2,1], -j2[10:1,4:3,1]) # must be anti-symmetric on appropriate interval
  checkException(jacw(j2, 1:4))
  jw=jacw(j2, c(1,1))
  checkEqualsNumeric(jw[1:13,1,1:5], -jw[13:1,1,5:1]) # must be anti-symmetric
}
test.ibsp=function() {
  x=seq(0, 1, len=11)
  f2=smbsp(x, x**2, nki=2)
  fi2=ibsp(f2)
  checkEqualsNumeric(fi2(x), x**3/3.)
  checkEqualsNumeric(bsppar(fi2)$qw, imat(f2)%*%bsppar(f2)$qw)
  f3=smbsp(x, x**3, nki=2)
  fi3=ibsp(f3)
  checkEqualsNumeric(fi3(x), x**4/4.)
  checkEqualsNumeric(bsppar(fi3)$qw, imat(f3)%*%bsppar(f3)$qw)
}

# doc examples
test.smbsp.ex=function() {
  x=seq(0, 1, length.out=11)
  y=sin(pi*x)+rnorm(x, sd=0.1)
  # constraint B-spline to be 0 at the interval ends
  fsm=smbsp(x, y, nki=1, lieq=list(rbind(c(0, 0), c(1, 0))))
  checkEqualsNumeric(c(0, 0), fsm(0:1))
}
test.fitsmbsp.ex=function() {
  # fit broken line with linear B-splines
  x1=seq(0, 1, length.out=11)
  x2=seq(1, 3, length.out=21)
  x3=seq(3, 4, len=11)
  set.seed(7)
  y1=x1+rnorm(x1, sd=0.1)
  y2=-2+3*x2+rnorm(x2, sd=0.1)
  y3=4+x3+rnorm(x3, sd=0.1)
  x=c(x1, x2, x3)
  y=c(y1, y2, y3)
  f=fitsmbsp(x, y, n=1, nki=2)
  r=f(x)-y
  #print(sum(r*r))
  if (FALSE) {
    pdf("tmp.pdf")
    plot(x, y)
    lines(x, f(x))
    dev.off()
  }
  #print(c("r2=", sum(r*r)))
  checkEqualsNumeric(0.3742364, sum(r*r), tolerance=1.e-6)
}
test.dbsp.ex=function() {
  x=seq(0., 1., length.out=11L)
  y=sin(2*pi*x)
  f=smbsp(x, y, nki=2L)
  d_f=dbsp(f)
  r=d_f(x)-2*pi*cos(2*pi*x)
  checkEqualsNumeric(0.1992064, sum(r*r), tolerance=1.e-6)
}
test.bcurve.ex=function() {
  set.seed(71)
  xy=matrix(rnorm(16), ncol=2)
  #print(bcurve(xy)(0.5))
  checkEqualsNumeric(c(-0.03506473, -0.1508343), bcurve(xy)(0.5), tolerance=1.e-6)
}
test.pbsc.ex=function() {
  n=3
  x=seq(0, 5, length.out=101)
  xk=c(rep(0, n+1), 1:4, rep(5, n+1))
  # cubic polynomial coefficients
  coeffs=parr(xk, n)
  # basis matrix
  m=pbsc(x, xk, coeffs)
  checkEqualsNumeric(c(m), c(bsc(x, xk)))
}

Try the bspline package in your browser

Any scripts or data that you put into this service are public.

bspline documentation built on April 4, 2025, 4:54 a.m.