R/sphere.R

Defines functions diff_sphere sphere

Documented in diff_sphere sphere

#' Generate Coordinates for a Sphere
#'
#' This function generates the coordinates for a sphere in three-dimensional space.
#'
#' @param radius The radius of the sphere.
#' @param resolution The number of points used to approximate the surface of the sphere.
#' @param num_noise The number of additional noise dimensions to add to the coordinates.
#' @param min_n The minimum value for the random noise added to the coordinates.
#' @param max_n The maximum value for the random noise added to the coordinates.
#'
#' @return A matrix containing the Cartesian coordinates of the points on the sphere.
#'
#' @examples
#' # Generate coordinates for a sphere with radius 1 and resolution 20
#' set.seed(20240412)
#' sphere(
#'   radius = 1, resolution = 20, num_noise = 3, min_n = -0.05,
#'   max_n = 0.05
#' )
#'
#' @export
sphere <- function(radius, resolution, num_noise, min_n, max_n) {
  if (radius <= 0) {
    stop("The radius of sphere should be a positive number.")
  }

  if (resolution <= 0) {
    stop("The number of points on the sphere surface should be a positive number.")
  }

  if (num_noise < 0) {
    stop("Number of noise dimensions should be a positive number.")
  }

  if (missing(radius)) {
    stop("Missing radius.")
  }

  if (missing(resolution)) {
    stop("Missing resolution.")
  }

  if (missing(num_noise)) {
    stop("Missing num_noise.")
  }


  # Generate the coordinates for the sphere
  theta <- seq(0, 2 * pi, length.out = resolution)
  phi <- seq(0, pi, length.out = resolution)
  coords <- expand.grid(theta = theta, phi = phi)

  # Convert spherical coordinates to Cartesian coordinates
  x <- radius * sin(coords$phi) * cos(coords$theta)
  y <- radius * sin(coords$phi) * sin(coords$theta)
  z <- radius * cos(coords$phi)

  sphere_mat <- matrix(c(x, y, z), ncol = 3)

  if (num_noise != 0) {
    if (missing(min_n)) {
      stop("Missing min_n.")
    }

    if (missing(max_n)) {
      stop("Missing max_n.")
    }

    noise_mat <- gen_noise_dims(
      n = dim(sphere_mat)[1], num_noise = num_noise,
      min_n = min_n, max_n = max_n
    )
    sphere_mat <- cbind(sphere_mat, noise_mat)

    sphere_mat
  } else {
    sphere_mat
  }
}

#' Generate data representing small spheres within a larger encompassing sphere with added noise.
#'
#' This function generates data points representing small spheres within a larger encompassing sphere
#' and adds noise to the data if specified.
#'
#' @param n Total number of data points to generate, should be a multiple of 13.
#' @param num_noise Number of additional noise dimensions to add to the data.
#' @param min_n Minimum value for the noise added to the data.
#' @param max_n Maximum value for the noise added to the data.
#'
#' @return A matrix containing the generated data points with or without added noise.
#'
#' @examples
#' set.seed(20240412)
#' diff_sphere(
#'   n = 390, num_noise = 2,
#'   min_n = -0.05, max_n = 0.05
#' )
#'
#' @export
diff_sphere <- function(n, num_noise, min_n, max_n) {
  if (n <= 0) {
    stop("The number of points should be a positive number.")
  }

  if (num_noise < 0) {
    stop("Number of noise dimensions should be a positive number.")
  }

  if (missing(n)) {
    stop("Missing n.")
  }

  if (missing(num_noise)) {
    stop("Missing num_noise.")
  }

  # To check that the assigned n is divided by thirteen
  if ((n %% 13) != 0) {
    warning("The sample size should be a product of thirteen.")
    small_sphere_sample_size <- floor(n / 13)
  } else {
    small_sphere_sample_size <- n / 13
  }

  m <- matrix(stats::rnorm(n = small_sphere_sample_size * 4),
    nrow = small_sphere_sample_size, ncol = 4
  )
  d_dim_sphere <- 3 * m / sqrt(rowSums(m * m))

  small_spheres <-
    replicate(3,
      sweep(
        d_dim_sphere, 2,
        stats::rnorm(n = 4, sd = 10 / sqrt(3)), `+`
      ),
      simplify = FALSE
    )

  # The larger encompassing sphere
  n_big_samples <- 10 * small_sphere_sample_size
  m <- matrix(stats::rnorm(n = n_big_samples * 4), nrow = n_big_samples, ncol = 4)
  big_sphere <- 3 * 5 * m / sqrt(rowSums(m * m))

  df <- rbind(do.call(rbind, small_spheres), big_sphere)

  if (num_noise != 0) {
    if (missing(min_n)) {
      stop("Missing min_n.")
    }

    if (missing(max_n)) {
      stop("Missing max_n.")
    }

    noise_mat <- gen_noise_dims(
      n = dim(df)[1], num_noise = num_noise,
      min_n = min_n, max_n = max_n
    )
    df <- cbind(df, noise_mat)

    df
  } else {
    df
  }
}

Try the cardinalR package in your browser

Any scripts or data that you put into this service are public.

cardinalR documentation built on May 29, 2024, 4:37 a.m.