Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
echo = TRUE,
warning = FALSE,
message = FALSE
)
set.seed(42L)
## -----------------------------------------------------------------------------
model_list <- caretEnsemble::caretList(
x = iris[, 1L:4L],
y = iris[, 5L],
methodList = c("rpart", "rf")
)
print(summary(model_list))
## -----------------------------------------------------------------------------
ens <- caretEnsemble::caretEnsemble(model_list)
print(summary(ens))
## -----------------------------------------------------------------------------
print(ens)
print(summary(ens))
## ----fig.alt="A dot and whisker plot of ROC for glmnet, rpart, and an ensemble. The ensemble has the highest ROC and is slighly better than the glmnet. The rpart model is bad."----
plot(ens)
## ----fig.alt="A 4-panel plot for glmnet, rpart, and an ensemble. The ensemble has the highest ROC and is slighly better than the glmnet. The rpart model is bad. The glmnet has the highest weight, and the residuals look biased."----
ggplot2::autoplot(ens)
## -----------------------------------------------------------------------------
class_control <- caretEnsemble::defaultControl(iris$Species)
print(ls(class_control))
## -----------------------------------------------------------------------------
reg_control <- caretEnsemble::defaultControl(iris$Sepal.Length)
print(ls(reg_control))
## -----------------------------------------------------------------------------
y <- iris[, 1L]
x <- iris[, 2L:3L]
flex_list <- caretEnsemble::caretList(
x = x,
y = y,
methodList = c("rpart", "rf"),
trControl = caretEnsemble::defaultControl(y, number = 3L)
)
flex_list$glm_boot <- caret::train(
x = x,
y = y,
method = "glm",
trControl = caretEnsemble::defaultControl(y, method = "boot", number = 25L)
)
flex_ens <- caretEnsemble::caretEnsemble(flex_list)
print(flex_ens)
## -----------------------------------------------------------------------------
X <- iris[, 1L:4L]
target_class <- iris[, 5L]
target_reg <- as.integer(iris[, 5L] == "virginica")
ctrl_class <- caretEnsemble::defaultControl(target_class)
ctrl_reg <- caretEnsemble::defaultControl(target_reg)
model_class <- caret::train(iris[, 1L:4L], target_class, method = "rf", trControl = ctrl_class)
model_reg <- caret::train(iris[, 1L:4L], target_reg, method = "rf", trControl = ctrl_reg)
mixed_list <- caretEnsemble::as.caretList(list(class = model_class, reg = model_reg))
mixed_ens <- caretEnsemble::caretEnsemble(mixed_list)
print(mixed_ens)
## -----------------------------------------------------------------------------
train_idx <- sample.int(nrow(iris), 100L)
train_data <- iris[train_idx, ]
new_data <- iris[-train_idx, ]
model_list <- caretEnsemble::caretList(
x = train_data[, 1L:4L],
y = train_data[, 5L],
methodList = c("rpart", "rf")
)
transfer_ens <- caretEnsemble::caretEnsemble(
model_list,
new_X = new_data[, 1L:4L],
new_y = new_data[, 5L]
)
print(transfer_ens)
## -----------------------------------------------------------------------------
preds <- predict(transfer_ens, newdata = head(new_data))
knitr::kable(preds, format = "markdown")
## -----------------------------------------------------------------------------
importance <- caret::varImp(transfer_ens)
print(round(importance, 2L))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.