Nothing
#' The normal reference bandwidth selection for weighted data
#'
#' @description This function computes the data-driven bandwidth for smoothing the ROC (or distribution) function using the NR method of Beyene and El Ghouch (2020). This is an extension of the classical (unweighted) normal reference bandwith selection method to the case of weighted data.
#'
#' @param X The numeric data vector.
#' @param wt The non-negative weight vector.
#' @param ktype A character string giving the type kernel to be used: "\code{normal}", "\code{epanechnikov}", "\code{biweight}", or "\code{triweight}". By default, the "\code{normal}" kernel is used.
#' @return Returns the computed value for the bandwith parameter.
#' @details See Beyene and El Ghouch (2020) for details.
#'
#' @author
#'
#' Kassu Mehari Beyene and Anouar El Ghouch
#'
#' @references Beyene, K. M. and El Ghouch A. (2020). Smoothed time-dependent receiver operating characteristic curve for right censored survival data. \emph{Statistics in Medicine}. 39: 3373– 3396.
#' @examples library(cenROC)
#'
#' X <- rnorm(100) # random data vector
#' wt <- runif(100) # weight vector
#'
#' ## Normal reference bandwidth selection
#' NR(X = X, wt = wt)$bw
#'
#' @export
NR <- function (X, wt, ktype="normal") {
nx <- length(X)
mul <- (nx * sum(wt * wt)) / ((sum(wt)) ^ 2)
stdv <- sqrt(wvar(X = X, wt = wt))
IQR <- wIQR(X = X, wt = wt)
sigma <- min(stdv, IQR / 1.349)
c <- (4 * sqrt(pi) * (muro(ktype)$ro) / ((muro(ktype = ktype)$mu2) ^ 2)) ^ (1 / 3)
wbw <- (c * sigma) * (mul ^ (1 / 3)) * nx ^ (-1 / 3)
return(list(bw = wbw))
}
#' The plug-in bandwidth selection for weighted data
#'
#' @description This function computes the data-driven bandwidth for smoothing the ROC (or distribution) function using the PI method of Beyene and El Ghouch (2020). This is an extension of the classical (unweighted) direct plug-in bandwith selection method to the case of weighted data.
#'
#' @param X The numeric vector of random variable.
#' @param wt The non-negative weight vector.
#' @param ktype A character string giving the type kernel to be used: "\code{normal}", "\code{epanechnikov}", "\code{biweight}", or "\code{triweight}". By default, the "\code{normal}" kernel is used.
#' @return Returns the computed value for the bandwith parameter.
#' @details See Beyene and El Ghouch (2020) for details.
#'
#' @author
#'
#' Kassu Mehari Beyene and Anouar El Ghouch
#'
#' @references Beyene, K. M. and El Ghouch A. (2020). Smoothed time-dependent receiver operating characteristic curve for right censored survival data. \emph{Statistics in Medicine}. 39: 3373– 3396.
#' @examples library(cenROC)
#'
#' X <- rnorm(100) # random data vector
#' wt <- runif(100) # weight vector
#'
#' ## Plug-in bandwidth selection
#' PI(X = X, wt = wt)$bw
#'
#' @export
PI <- function(X, wt, ktype="normal")
{
### bandwidth estimation ###################
band <- function (X, wt, psi, ktype) {
n <- length(X)
mul <- (n * sum(wt * wt)) / ((sum(wt)) ^ 2)
#### Estimates of E(wt^2)/((E(wt))^2)
co <- ((muro(ktype = ktype)$ro) / ((muro(ktype = ktype)$mu2) ^ 2)) ^ (1 / 3)
wbww <- (co) * (mul ^ (1 / 3)) * (n ^ (-1 / 3)) * ((-psi) ^ (-1 / 3))
return(wbww)
}
####### Estimation of psi ################
psi <- function(r, g) {
n <- length(X)
w <- (n * wt) / (sum(wt)) #### Estimate for wt/E(wt)
ww <- outer(w, w, "*")
aux <- outer(X, X, "-") / g
aux <- (ww) * (dnorkernel(r, aux))
result <- (sum(aux)) * (((g) ^ (-r - 1)) * (n ^ (-2)))
return(result)
}
g0 <- NR(X, wt, ktype = ktype)$bw ### Intial bandwidt estimatioh using normal reference
psi2 <- psi(2, g0) ### Plug-in estimate
PIbw <- band(X, wt, psi2, ktype = ktype)
return(list(bw = PIbw))
}
#############################################################################
## This function is modified from kerdiest R package CVbw function ##########
## of Quintela-del-Rio and Estevez-Perez (2015) ##########
#############################################################################
#' The cross-validation bandwidth selection for weighted data
#'
#' @description This function computes the data-driven bandwidth for smoothing the ROC (or distribution) function using the CV method of Beyene and El Ghouch (2020). This is an extension of the classical (unweighted) cross-validation bandwith selection method to the case of weighted data.
#'
#' @param X The numeric data vector.
#' @param wt The non-negative weight vector.
#' @param ktype A character string giving the type kernel to be used: "\code{normal}", "\code{epanechnikov}", "\code{biweight}", or "\code{triweight}". By default, the "\code{normal}" kernel is used.
#' @return Returns the computed value for the bandwith parameter.
#' @details Bowman et al (1998) proposed the cross-validation bandwidth selection method for unweighted kernal smoothed distribution function. This method is implemented in the \code{R} package \code{kerdiest}.
#' We adapted this for the case of weighted data by incorporating the weight variable into the cross-validation function of Bowman's method. See Beyene and El Ghouch (2020) for details.
#'
#' @author
#'
#' Kassu Mehari Beyene and Anouar El Ghouch
#'
#' @references Beyene, K. M. and El Ghouch A. (2020). Smoothed time-dependent receiver operating characteristic curve for right censored survival data. \emph{Statistics in Medicine}. 39: 3373– 3396.
#' @references Bowman A., Hall P. and Trvan T.(1998). Bandwidth selection for the smoothing of distribution functions. \emph{Biometrika} 85:799-808.
#' @references Quintela-del-Rio, A. and Estevez-Perez, G. (2015). \code{kerdiest:} Nonparametric kernel estimation of the distribution function, bandwidth selection and estimation of related functions. \code{R} package version 1.2.
#' @examples
#' \donttest{library(cenROC)
#'
#' X <- rnorm(100) # random data vector
#' wt <- runif(100) # weight vector
#'
#' ## Cross-validation bandwidth selection
#' CV(X = X, wt = wt)$bw
#'
#' }
#' @export
CV <- function(X, wt, ktype = "normal")
{
mul <- length(wt) / sum(wt)
prob_quantile <- 0
ss <- quantile(X, c(prob_quantile, 1 - prob_quantile))
y <- seq(ss[1], ss[2], length.out = 100)
seq_bws = seq((max(X) - min(X)) / 200, (max(X) - min(X)) / 2, length.out = 50)
n_bws <- length(seq_bws)
CVfunction <- numeric(length = n_bws)
for (i in 1:n_bws)
{
integrand <- apply((t((mul * wt) * (t(outer(y, X, "-") >= 0))) - t(ker_dis_i(ktype = ktype, y = y, X = X, wt = wt, bw = seq_bws[i]))) ^ 2, 1, mean)
CVfunction[i] <- integ(x = y, fx = integrand, method = "simps")
}
i0 <- which.min(CVfunction)
CVbw_val <- seq_bws[i0]
wbw <- CVbw_val
return(list(bw = wbw))
}
#' Function to select the bandwidth parameter needed for smoothing the time-dependent ROC curve.
#'
#' @description This function computes the data-driven bandwidth value for smoothing the ROC curve.
#' It contains three methods: the normal refrence, the plug-in and the cross-validation methods.
#'
#' @param X The numeric data vector.
#' @param wt The non-negative weight vector.
#' @param bw A character string specifying the bandwidth selection method. The possible options are "\code{NR}" for the normal reference, the plug-in "\code{PI}" and cross-validation "\code{CV}".
#' @param ktype A character string indicating the type of kernel function: "\code{normal}", "\code{epanechnikov}", "\code{biweight}", or "\code{triweight}". Default is "\code{normal}" kernel.
#' @return Returns the estimated value for the bandwith parameter.
#'
#' @author
#'
#' Kassu Mehari Beyene and Anouar El Ghouch
#'
#' @references Beyene, K. M. and El Ghouch A. (2020). Smoothed time-dependent receiver operating characteristic curve for right censored survival data. \emph{Statistics in Medicine}. 39: 3373– 3396.
#' @keywords internal
wbw <- function(X, wt, bw = "NR", ktype = "normal")
{
if (is.numeric(bw)) {
bwv <- bw
} else if (bw == "CV") {
bwv <- CV(X = X, wt = wt, ktype = ktype)$bw
} else if (bw == "NR") {
bwv <- NR(X = X, wt = wt, ktype = ktype)$bw
} else if (bw == "PI") {
bwv <- PI(X = X, wt = wt, ktype = ktype)$bw
} else{
warning("Please check your bandwidth options")
}
return(list(bw = bwv))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.