# demo/Hampel1.R In climtrends: Statistical Methods for Climate Sciences

```# Hampel filter removal of outliers
print('Hampel filter removal of outliers')
X <- 1:1000 # Pseudo Time
Y <- 5000 + rnorm(1000) # Pseudo Data
Outliers <- sample(1:1000, 10, replace =FALSE) # Index of Outliers
Y[Outliers] <- Y[Outliers] + sample(1:1000, 10, replace =FALSE) # Pseudo Outliers
tmp <- FindOutliersHampel(X, Y)
YY <- tmp[,'YY']
I <- which(tmp[,'I']==1)
Y0 <- tmp[,'Y0']
LB <- tmp[,'LB']
UB <- tmp[,'UB']
ADX <- tmp[,'ADX']
plot(X, Y,pch=18,ylim=c(5000,6000),xlim=c(0,1000),col='blue',xlab='',ylab='');par(new=TRUE)      # Original Data
plot(X, YY,ylim=c(5000,6000),xlim=c(0,1000),type='l',col='red',xlab='',ylab='');par(new=TRUE)               # Hampel Filtered Data
plot(X, Y0,ylim=c(5000,6000),xlim=c(0,1000),type='l',col='blue',lty=2,xlab='',ylab='');par(new=TRUE)             # Nominal Data
plot(X, LB,ylim=c(5000,6000),xlim=c(0,1000),type='l',col='red',lty=2,xlab='',ylab='');par(new=TRUE)             # Lower Bounds on Hampel Filter
plot(X, UB,ylim=c(5000,6000),xlim=c(0,1000),type='l',col='red',lty=2,xlab='',ylab='');par(new=TRUE)             # Upper Bounds on Hampel Filter
plot(X[I], Y[I],ylim=c(5000,6000),xlim=c(0,1000),pch=0,xlab='',ylab='')         # Identified Outliers
```

## Try the climtrends package in your browser

Any scripts or data that you put into this service are public.

climtrends documentation built on May 29, 2017, 11:58 p.m.