Nothing
#' Combined Analysis of Clinical Significance
#'
#' @description `cs_combined()` can be used to determine the clinical
#' significance of intervention studies employing the combination of the
#' distribution-based and statistical approach. For this, it will be assumed
#' that the functional (non-clinical population) and patient (clinical
#' population) scores form two distinct distributions on a continuum.
#' `cs_combined()` calculates a cutoff point between these two populations as
#' well as a reliable change index (RCI) based on a provided instrument
#' reliability estimate and counts, how many of those patients that showed a
#' reliable change (that is likely to be not due to measurement error)
#' switched from the clinical to the functional population during
#' intervention. Several methods for calculating the cutoff and RCI are
#' available.
#'
#' @inheritSection cs_statistical Computational details
#' @inheritSection cs_distribution Computational details
#'
#' @section Categories: Each individual's change can then be categorized into
#' the following groups:
#' - Recovered, i.e., the individual showed a reliable change in the beneficial direction and changed from the clinical to the functional population
#' - Improved, i.e., the individual showed a reliable change in the beneficial direction but did not change populations
#' - Unchanged, i.e., the individual showed no reliable change
#' - Deteriorated, i.e., the individual showed a reliable change in the disadvantageous direction but did not change populations
#' - Harmed, i.e., the individual showed a reliable change in the disadvantageous direction and switched from the functional to the clinincal population
#'
#' @inheritSection cs_distribution Data preparation
#'
#' @inheritParams cs_distribution
#' @inheritParams cs_statistical
#' @inheritParams cs_anchor
#'
#' @family main
#'
#' @return An S3 object of class `cs_analysis` and `cs_combined`
#' @export
#'
#' @examples
# In this case, cutoff "a" is chosen by default
#' cs_results <- claus_2020 |>
#' cs_combined(
#' id,
#' time,
#' bdi,
#' pre = 1,
#' post = 4,
#' reliability = 0.80
#' )
#'
#' cs_results
#' summary(cs_results)
#' plot(cs_results)
#'
#'
#' # You can choose a different cutoff but must provide summary statistics for the
#' # functional population
#' cs_results_c <- claus_2020 |>
#' cs_combined(
#' id,
#' time,
#' bdi,
#' pre = 1,
#' post = 4,
#' reliability = 0.80,
#' m_functional = 8,
#' sd_functional = 8,
#' cutoff_type = "c"
#' )
#'
#' cs_results_c
#' summary(cs_results_c)
#' plot(cs_results_c)
#'
#'
#' # You can group the analysis by providing a grouping variable in the data
#' cs_results_grouped <- claus_2020 |>
#' cs_combined(
#' id,
#' time,
#' bdi,
#' pre = 1,
#' post = 4,
#' group = treatment,
#' reliability = 0.80,
#' m_functional = 8,
#' sd_functional = 8,
#' cutoff_type = "c"
#' )
#'
#' cs_results_grouped
#' summary(cs_results_grouped)
#' plot(cs_results_grouped)
cs_combined <- function(
data,
id,
time,
outcome,
group = NULL,
pre = NULL,
post = NULL,
mid_improvement = NULL,
mid_deterioration = NULL,
reliability = NULL,
reliability_post = NULL,
m_functional = NULL,
sd_functional = NULL,
better_is = c("lower", "higher"),
rci_method = c("JT", "GLN", "HLL", "EN", "NK", "HA", "HLM"),
cutoff_type = c("a", "b", "c"),
significance_level = 0.05
) {
# Argument checks
cs_method <- rlang::arg_match(rci_method)
cut_type <- rlang::arg_match(cutoff_type)
if (missing(id)) {
cli::cli_abort(
"Argument {.code id} is missing with no default. A column containing patient-specific IDs must be supplied."
)
}
if (missing(time)) {
cli::cli_abort(
"Argument {.code time} is missing with no default. A column identifying the individual measurements must be supplied."
)
}
if (missing(outcome)) {
cli::cli_abort(
"Argument {.code outcome} is missing with no default. A column containing the outcome must be supplied."
)
}
if (is.null(mid_improvement) & cs_method != "HLM") {
if (is.null(reliability)) {
cli::cli_abort(
"Argument {.code reliability} is missing with no default. An instrument reliability must be supplied."
)
}
if (!is.null(reliability) & !is.numeric(reliability)) {
cli::cli_abort(
"{.code reliability} must be numeric but a {.code {typeof(reliability)}} was supplied."
)
}
if (!is.null(reliability) & !dplyr::between(reliability, 0, 1)) {
cli::cli_abort(
"{.code reliability} must be between 0 and 1 but {reliability} was supplied."
)
}
}
if (cut_type %in% c("b", "c")) {
if (is.null(m_functional) | is.null(sd_functional)) {
cli::cli_abort(
"For cutoffs {.code b} and {.code c}, mean and standard deviation for a functional population must be provided via {.code m_functional} and {.code sd_functional}"
)
}
if (
(!is.null(m_functional) & !is.numeric(m_functional)) |
(!is.null(sd_functional) & !is.numeric(sd_functional))
) {
cli::cli_abort(
"The mean and standard deviation supplied with {.code m_functional} and {.code sd_functional} must be numeric."
)
}
}
# Prepare the data
datasets <- .prep_data(
data = data,
id = {{ id }},
time = {{ time }},
outcome = {{ outcome }},
group = {{ group }},
pre = {{ pre }},
post = {{ post }},
method = cs_method
)
# Prepend a class to enable method dispatch for RCI calculation
if (!is.null(mid_improvement)) {
class(datasets) <- c("cs_anchor_individual_within", class(datasets))
} else {
class(datasets) <- c(paste0("cs_", tolower(cs_method)), class(datasets))
}
if (!is.null(mid_improvement)) {
cs_method <- "CWB"
}
# Count participants
n_obs <- list(
n_original = nrow(datasets[["wide"]]),
n_used = nrow(datasets[["data"]])
)
# Calculate relevant summary statistics for the chosen RCI method
m_pre <- mean(datasets[["data"]][["pre"]])
sd_pre <- stats::sd(datasets[["data"]][["pre"]])
if (cs_method %in% c("HLL", "HA")) {
m_post <- mean(datasets[["data"]][["post"]])
sd_post <- stats::sd(datasets[["data"]][["post"]])
}
# Get the direction of a beneficial intervention effect
if (rlang::arg_match(better_is) == "lower") {
direction <- -1
} else {
direction <- 1
}
# Determine critical RCI value based on significance level
if (cs_method != "HA") {
critical_value <- stats::qnorm(1 - significance_level / 2)
} else {
critical_value <- stats::qnorm(1 - significance_level)
}
if (is.null(mid_improvement)) {
# Determine RCI and check each participant's change relative to it
rci_results <- calc_rci(
data = datasets,
m_pre = m_pre,
m_post = m_post,
sd_pre = sd_pre,
sd_post = sd_post,
reliability = reliability,
reliability_post = reliability_post,
direction = direction,
critical_value = critical_value
)
} else {
# Check each participant's or group change relative to MID
if (is.null(mid_deterioration)) {
mid_deterioration <- mid_improvement
}
rci_results <- calc_anchor(
data = datasets,
mid_improvement = mid_improvement,
mid_deterioration = mid_deterioration,
direction = direction
)
}
# Calculate the cutoff value and check each patient's change relative to it
cutoff_results <- calc_cutoff_from_data(
data = datasets,
m_clinical = m_pre,
sd_clinical = sd_pre,
m_functional = m_functional,
sd_functional = sd_functional,
m_post = m_post,
sd_post = sd_post,
reliability = reliability,
type = cut_type,
direction = direction,
critical_value = critical_value
)
class(rci_results) <- c("cs_combined", "list")
# Create the summary table for printing and exporting
summary_table <- create_summary_table(
x = rci_results,
cutoff_results = cutoff_results,
data = datasets,
method = cs_method,
r_dd = rci_results[["r_dd"]],
se_measurement = rci_results[["se_measurement"]],
cutoff = cutoff_results[["info"]][["value"]],
sd_post = sd_post,
direction = direction
)
class(rci_results) <- "list"
class(cutoff_results) <- "list"
if (!is.null(mid_improvement)) {
cs_method <- "CWB"
}
# Put everything into a list
output <- list(
datasets = datasets,
cutoff_results = cutoff_results,
rci_results = rci_results,
outcome = deparse(substitute(outcome)),
n_obs = n_obs,
method = cs_method,
mid_improvement = mid_improvement,
mid_deterioration = mid_deterioration,
direction = direction,
reliability = reliability,
critical_value = critical_value,
summary_table = summary_table
)
# Return output
class(output) <- c(
"cs_analysis",
"cs_combined",
class(datasets),
class(output)
)
output
}
#' Print Method for the Combined Approach
#'
#' @param x An object of class `cs_combined`
#' @param ... Additional arguments
#'
#' @return No return value, called for side effects
#' @export
#'
#' @examples
#' cs_results <- claus_2020 |>
#' cs_combined(id, time, hamd, pre = 1, post = 4, reliability = 0.8)
#'
#' cs_results
print.cs_combined <- function(x, ...) {
individual_summary_table <- .format_summary_table(x[["summary_table"]][[
"individual_level_summary"
]])
cs_method <- x[["method"]]
if (cs_method == "HA") {
group_summary_table <- x[["summary_table"]][["group_level_summary"]] |>
.format_summary_table(table_title = "Group Level Summary")
}
if (x[["direction"]] == -1) {
direction <- "Lower"
} else {
direction <- "Higher"
}
model_info <- .format_model_info_string(
list(
Approach = "Combined",
"Method" = cs_method,
"Better is" = direction
)
)
# Print output
if (cs_method != "HA") {
.print_strings(
model_info,
individual_summary_table
)
} else {
.print_strings(
model_info,
individual_summary_table,
group_summary_table
)
}
}
#' Summary Method for the Combined Approach
#'
#' @param object An object of class `cs_combined`
#' @param ... Additional arguments
#'
#' @return No return value, called for side effects only
#' @export
#'
#' @examples
#' cs_results <- claus_2020 |>
#' cs_combined(id, time, hamd, pre = 1, post = 4, reliability = 0.8)
#'
#' summary(cs_results)
summary.cs_combined <- function(object, ...) {
# browser()
# Get necessary information from object
summary_table <- .format_summary_table(
object[["summary_table"]][[
"individual_level_summary"
]],
table_title = "-- Results"
)
rci_method <- object[["method"]]
n_original <- cs_get_n(object, "original")[[1]]
n_used <- cs_get_n(object, "used")[[1]]
cutoff_info <- cs_get_cutoff(object, with_descriptives = TRUE)
cutoff_type <- cutoff_info[["type"]]
cutoff_value <- round(cutoff_info[["value"]], 2)
cutoff_descriptives <- cutoff_info[, 1:4] |>
dplyr::rename(
"M Clinical" = "m_clinical",
"SD Clinical" = "sd_clinical",
"M Functional" = "m_functional",
"SD Functional" = "sd_functional"
) |>
insight::export_table(missing = "---", title = "-- Cutoff Descriptives")
mid_improvement <- object[["mid_improvement"]]
mid_deterioration <- object[["mid_deterioration"]]
if (rci_method == "HA") {
group_summary_table <- .format_summary_table(
object[["summary_table"]][["group_level_summary"]],
table_title = "Group Level Results"
)
}
outcome <- object[["outcome"]]
model_info <- list(
Approach = "Distribution-based",
"RCI Method" = rci_method,
"N (original)" = n_original,
"N (used)" = n_used,
"Percent used" = insight::format_percent(
n_used / n_original
),
Outcome = object[["outcome"]],
"Cutoff Type" = cutoff_type,
Cutoff = cutoff_value,
Outcome = outcome
)
if (rci_method == "HLM") {
additional_info <- list(
Reliability = "----"
)
} else if (rci_method == "NK") {
additional_info <- list(
"Realiability Pre" = cs_get_reliability(object)[[1]],
"Reliability Post" = cs_get_reliability(object)[[2]]
)
}
if (rci_method == "CWB") {
additional_info <- list(
"MID (Improvement)" = mid_improvement,
"MID (Deterioration)" = mid_deterioration
)
} else {
additional_info <- list(
Reliability = cs_get_reliability(object)[[1]]
)
}
model_info <- .format_model_info_string(c(model_info, additional_info))
# Print output
.print_strings(
model_info,
cutoff_descriptives,
summary_table
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.