Nothing
#' Distribution-Based Analysis of Clinical Significance
#'
#' @description `cs_distribution()` can be used to determine the clinical
#' significance of intervention studies employing the distribution-based
#' approach. For this, the reliable change index is estimated from the
#' provided data and a known reliability estimate which indicates, if an
#' observed individual change is likely to be greater than the measurement
#' error inherent for the used instrument. In this case, a reliable change is
#' defined as clinically significant. Several methods for calculating this RCI
#' can be chosen.
#'
#' @section Computational details: From the provided data, a region of change is
#' calculated in which an individual change may likely be due to an inherent
#' measurement of the used instrument. This concept is also known as the
#' minimally detectable change (MDC).
#'
#'
#' @section Categories: Each individual's change may then be categorized into
#' one of the following three categories:
#' - Improved, the change is greater than the RCI in the beneficial direction
#' - Unchanged, the change is within a region that may attributable to
#' measurement error
#' - Deteriorated, the change is greater than the RCI, but in the
#' disadvantageous direction
#'
#' Most of these methods are developed to deal with data containing two
#' measurements per individual, i.e., a pre intervention and post intervention
#' measurement. The Hierarchical Linear Modeling (`rci_method = "HLM"`) method
#' can incorporate data for multiple measurements an can thus be used only
#' for at least three measurements per participant.
#'
#' @section Data preparation: The data set must be tidy, which corresponds to a
#' long data frame in general. It must contain a patient identifier which must
#' be unique per patient. Also, a column containing the different measurements
#' and the outcome must be supplied. Each participant-measurement combination
#' must be unique, so for instance, the data must not contain two "After"
#' measurements for the same patient.
#'
#' Additionally, if the measurement column contains only two values, the first
#' value based on alphabetical, numerical or factor ordering will be used as
#' the `pre` measurement. For instance, if the column contains the
#' measurements identifiers `"pre"` and `"post"` as strings, then `"post"`
#' will be sorted before `"pre"` and thus be used as the `"pre"` measurement.
#' The function will throw a warning but generally you may want to explicitly
#' define the `"pre"` and `"post"` measurement with arguments `pre` and
#' `post`. In case of more than two measurement identifiers, you have to
#' define `pre` and `post` manually since the function does not know what your
#' pre and post intervention measurements are.
#'
#' If your data is grouped, you can specify the group by referencing the
#' grouping variable (see examples below). The analysis is then run for every
#' group to compare group differences.
#'
#' @param data A tidy data frame
#' @param id Participant ID
#' @param time Time variable
#' @param outcome Outcome variable
#' @param group Grouping variable (optional)
#' @param pre Pre measurement (only needed if the time variable contains more
#' than two measurements)
#' @param post Post measurement (only needed if the time variable contains more
#' than two measurements)
#' @param reliability The instrument's reliability estimate. If you selected the
#' NK method, the here specified reliability will be the instrument's pre
#' measurement reliability. Not needed for the HLM method.
#' @param reliability_post The instrument's reliability at post measurement
#' (only needed for the NK method)
#' @param better_is Which direction means a better outcome for the used
#' instrument? Available are
#' - `"lower"` (lower outcome scores are desirable, the default) and
#' - `"higher"` (higher outcome scores are desirable)
#' @param rci_method Clinical significance method. Available are
#' - `"JT"` (Jacobson & Truax, 1991, the default)
#' - `"GLN"` (Gulliksen, Lord, and Novick; Hsu, 1989, Hsu, 1995)
#' - `"HLL"` (Hsu, Linn & Nord; Hsu, 1989)
#' - `"EN"` (Edwards & Nunnally; Speer, 1992)
#' - `"NK"` (Nunnally & Kotsch, 1983), requires a reliability estimate at post
#' measurement. If this is not supplied, reliability and reliability_post are
#' assumed to be equal
#' - `"HA"` (Hageman & Arrindell, 1999)
#' - `"HLM"` (Hierarchical Linear Modeling; Raudenbush & Bryk, 2002),
#' requires at least three measurements per patient
#' @param significance_level Significance level alpha, defaults to `0.05`. If
#' you choose the `"HA"` method, this value corresponds to the maximum risk of
#' misclassification
#'
#' @references
#' - Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12–19. https://doi.org/10.1037//0022-006X.59.1.12
#' - Hsu, L. M. (1989). Reliable changes in psychotherapy: Taking into account regression toward the mean. Behavioral Assessment, 11(4), 459–467.
#' - Hsu, L. M. (1995). Regression toward the mean associated with measurement error and the identification of improvement and deterioration in psychotherapy. Journal of Consulting and Clinical Psychology, 63(1), 141–144. https://doi.org/10.1037//0022-006x.63.1.141
#' - Speer, D. C. (1992). Clinically significant change: Jacobson and Truax (1991) revisited. Journal of Consulting and Clinical Psychology, 60(3), 402–408. https://doi.org/10.1037/0022-006X.60.3.402
#' - Nunnally, J. C., & Kotsch, W. E. (1983). Studies of individual subjects: Logic and methods of analysis. British Journal of Clinical Psychology, 22(2), 83–93. https://doi.org/10.1111/j.2044-8260.1983.tb00582.x
#' - Hageman, W. J., & Arrindell, W. A. (1999). Establishing clinically significant change: increment of precision and the distinction between individual and group level analysis. Behaviour Research and Therapy, 37(12), 1169–1193. https://doi.org/10.1016/S0005-7967(99)00032-7
#' - Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models - Applications and Data Analysis Methods (2nd ed.). Sage Publications.
#'
#' @family main
#'
#' @return An S3 object of class `cs_analysis` and `cs_distribution`
#' @export
#'
#' @examples
#' antidepressants |>
#' cs_distribution(patient, measurement, mom_di, reliability = 0.80)
#'
#'
#' # Turn off the warning by providing the pre measurement time
#' cs_results <- antidepressants |>
#' cs_distribution(
#' patient,
#' measurement,
#' mom_di,
#' pre = "Before",
#' reliability = 0.80
#' )
#'
#' summary(cs_results)
#' plot(cs_results)
#'
#'
#' # If you use data with more than two measurements, you always have to define a
#' # pre and post measurement
#' cs_results <- claus_2020 |>
#' cs_distribution(
#' id,
#' time,
#' hamd,
#' pre = 1,
#' post = 4,
#' reliability = 0.80
#' )
#'
#' cs_results
#' summary(cs_results)
#' plot(cs_results)
#'
#'
#' # Set the rci_method argument to change the RCI method
#' cs_results_ha <- claus_2020 |>
#' cs_distribution(
#' id,
#' time,
#' hamd,
#' pre = 1,
#' post = 4,
#' reliability = 0.80,
#' rci_method = "HA"
#' )
#'
#' cs_results_ha
#' summary(cs_results_ha)
#' plot(cs_results_ha)
#'
#'
#' # Group the analysis by providing a grouping variable
#' cs_results_grouped <- claus_2020 |>
#' cs_distribution(
#' id,
#' time,
#' hamd,
#' pre = 1,
#' post = 4,
#' group = treatment,
#' reliability = 0.80
#' )
#'
#' cs_results_grouped
#' summary(cs_results_grouped)
#' plot(cs_results_grouped)
#'
#'
#' # Use more than two measurements
#' cs_results_hlm <- claus_2020 |>
#' cs_distribution(
#' id,
#' time,
#' hamd,
#' rci_method = "HLM"
#' )
#'
#' cs_results_hlm
#' summary(cs_results_hlm)
#' plot(cs_results_hlm)
cs_distribution <- function(data,
id,
time,
outcome,
group = NULL,
pre = NULL,
post = NULL,
reliability = NULL,
reliability_post = NULL,
better_is = c("lower", "higher"),
rci_method = c("JT", "GLN", "HLL", "EN", "NK", "HA", "HLM"),
significance_level = 0.05) {
# Check arguments
cs_method <- rlang::arg_match(rci_method)
if (missing(id)) cli::cli_abort("Argument {.code id} is missing with no default. A column containing patient-specific IDs must be supplied.")
if (missing(time)) cli::cli_abort("Argument {.code time} is missing with no default. A column identifying the individual measurements must be supplied.")
if (missing(outcome)) cli::cli_abort("Argument {.code outcome} is missing with no default. A column containing the outcome must be supplied.")
if (cs_method != "HLM") {
if (is.null(reliability)) cli::cli_abort("Argument {.code reliability} is missing with no default. An instrument reliability must be supplied.")
if (!is.null(reliability) & !is.numeric(reliability)) cli::cli_abort("{.code reliability} must be numeric but a {.code {typeof(reliability)}} was supplied.")
if (!is.null(reliability) & !dplyr::between(reliability, 0, 1)) cli::cli_abort("{.code reliability} must be between 0 and 1 but {reliability} was supplied.")
}
# For the NK RCI method, a reliability for the post measurement must be
# supplied. If this is not the case, reliability_post will be set to the
# reliabiliy (pre) value and the user will be informed of this decision
if (cs_method == "NK" & missing(reliability_post)) {
reliability_post <- reliability
cli::cli_inform("The NK method requires reliability estimates for both,
the pre and post measurement. You can specify the post
reliability with the {.code reliability_post} argument.
For now, {.code reliability_post} was set to
{.code reliability}.")
}
# Prepare the data
datasets <- .prep_data(
data = data,
id = {{ id }},
time = {{ time }},
outcome = {{ outcome }},
group = {{ group }},
pre = {{ pre }},
post = {{ post }},
method = cs_method
)
# Prepend a class to enable method dispatch for RCI calculation
class(datasets) <- c(paste0("cs_", tolower(cs_method)), class(datasets))
# Count participants
n_obs <- list(
n_original = nrow(datasets[["wide"]]),
n_used = nrow(datasets[["data"]])
)
# Calculate relevant summary statistics for the chosen RCI method
m_pre <- mean(datasets[["data"]][["pre"]])
sd_pre <- stats::sd(datasets[["data"]][["pre"]])
if (cs_method %in% c("HLL", "HA")) {
m_post <- mean(datasets[["data"]][["post"]])
sd_post <- stats::sd(datasets[["data"]][["post"]])
}
# Get the direction of a beneficial intervention effect
if (rlang::arg_match(better_is) == "lower") direction <- -1 else direction <- 1
# Determine critical RCI value based on significance level
if (cs_method != "HA") critical_value <- stats::qnorm(1 - significance_level/2) else critical_value <- stats::qnorm(1 - significance_level)
# Determine RCI and check each participant's change relative to it
rci_results <- calc_rci(
data = datasets,
m_pre = m_pre,
m_post = m_post,
sd_pre = sd_pre,
sd_post = sd_post,
reliability = reliability,
reliability_post = reliability_post,
direction = direction,
critical_value = critical_value
)
# Create the summary table for printing and exporting
summary_table <- create_summary_table(
x = rci_results,
data = datasets
)
class(rci_results) <- "list"
# Put everything into a list
output <- list(
datasets = datasets,
rci_results = rci_results,
outcome = deparse(substitute(outcome)),
n_obs = n_obs,
method = cs_method,
reliability = reliability,
critical_value = critical_value,
summary_table = summary_table
)
# Return output
class(output) <- c("cs_analysis", "cs_distribution", class(datasets), class(output))
output
}
#' Print Method for the Distribution-Based Approach
#'
#' @param x An object of class `cs_distribution`
#' @param ... Additional arguments
#'
#' @return No return value, called for side effects
#' @export
#'
#' @examples
#' cs_results <- claus_2020 |>
#' cs_distribution(id, time, hamd, pre = 1, post = 4, reliability = 0.8)
#'
#' cs_results
print.cs_distribution <- function(x, ...) {
summary_table <- x[["summary_table"]]
cs_method <- x[["method"]]
summary_table_formatted <- summary_table |>
dplyr::rename_with(tools::toTitleCase)
# Print output
output_fun <- function() {
cli::cli_h2("Clinical Significance Results")
cli::cli_text("Distribution-based approach using the {.strong {cs_method}} method.")
cli::cat_line()
cli::cli_verbatim(insight::export_table(summary_table_formatted))
}
output_fun()
}
#' Summary Method for the Distribution-Based Approach
#'
#' @param object An object of class `cs_distribution`
#' @param ... Additional arguments
#'
#' @return No return value, called for side effects only
#' @export
#'
#' @examples
#' cs_results <- claus_2020 |>
#' cs_distribution(id, time, hamd, pre = 1, post = 4, reliability = 0.8)
#'
#' summary(cs_results)
summary.cs_distribution <- function(object, ...) {
# Get necessary information from object
summary_table <- object[["summary_table"]]
summary_table_formatted <- summary_table |>
dplyr::rename_with(tools::toTitleCase)
cs_method <- object[["method"]]
n_original <- cs_get_n(object, "original")[[1]]
n_used <- cs_get_n(object, "used")[[1]]
pct <- round(n_used / n_original, digits = 3) * 100
outcome <- object[["outcome"]]
if (cs_method == "HLM") {
reliability_summary <- "The outcome was {.strong {outcome}}."
} else if (cs_method != "NK") {
reliability <- cs_get_reliability(object)[[1]]
reliability_summary <- "The outcome was {.strong {outcome}} and the reliability was set to {.strong {reliability}}."
} else {
reliability_pre <- cs_get_reliability(object)[[1]]
reliability_post <- cs_get_reliability(object)[[2]]
reliability_summary <- "The outcome was {.strong {outcome}} and the reliability was set to {.strong {reliability_pre}} (pre intervention) and {.strong {reliability_post}} (post intervention)."
}
# Print output
output_fun <- function() {
cli::cli_h2("Clinical Significance Results")
cli::cli_text("Distribution-based analysis of clinical significance using the {.strong {cs_method}} method for calculating the RCI.")
cli::cat_line()
cli::cli_text("There were {.strong {n_original}} participants in the whole dataset of which {.strong {n_used}} {.strong ({pct}%)} could be included in the analysis.")
cli::cat_line()
cli::cli_text(reliability_summary)
cli::cat_line()
cli::cli_h3("Individual Level Results")
cli::cli_verbatim(insight::export_table(summary_table_formatted))
}
output_fun()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.