Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
out.width = "80%",
dpi = 300
)
## ----setup--------------------------------------------------------------------
library(clockSim)
library(matrixStats)
library(dplyr)
## -----------------------------------------------------------------------------
model_gen <- getOdinGen()$continuous_LG
model <- model_gen$new()
sim_hours <- seq(from = 0, to = 2400, by = 1)
res <- model$run(sim_hours) |> as.data.frame()
res$time <- res$t
plot(plot_phase(res, M_T, C_N))
plot(plot_timeSeries(res, 0, 240, 1, 6, M_T, C_N))
print(compute_period(res$M_T |> tail(n = 240), method = "lomb"))
## -----------------------------------------------------------------------------
run_eta(model, sim_hours)
## -----------------------------------------------------------------------------
# Compute summary
summary <- res |>
select(-t, -time) |>
apply(2, summary)
# Only keep min/mean/max
summary <- summary[c(1,4,6),]
# Add on mean+N*spread, N=2,3,...,N_max
N_max <- 3 # For larger scan increase this. CRAN=3
get_multiples <- function(s, k) {
# Extract components
min <- s[1, ]
mean <- s[2, ]
delta <- s[3, ] - min
# Create new rows using vectorized operations
multiples <- outer(k, delta) |> sweep(2, mean, "+")
attr(multiples, "original") <- s
# Return
multiples
}
summary <- get_multiples(summary, 2:N_max)
summary <- summary[,c("M_T", "M_P")] # Only RNA states
# Create grid
grid <- expand.grid(
summary |> as.data.frame(), KEEP.OUT.ATTRS = FALSE)
# User variables for initial state start with setUserInitial_
names(grid) <- paste0("setUserInitial_",names(grid))
## -----------------------------------------------------------------------------
default_attractor <- model_gen$new()$run(sim_hours)
default_attractor <-
default_attractor[(length(sim_hours)-240):length(sim_hours),]
stat.fn <- function(raw_run, reference = default_attractor){
# Return code == 2 means successful integration (at least for lsoda)
succ <- attr(raw_run, "istate")[1] == 2
# Subset only the last 240 time points - should be stabilized
raw_run <- raw_run[(nrow(raw_run)-240):nrow(raw_run),]
# Compute normalized RMSE
nrmse <- compute_rmse(raw_run, reference, normalize = "range")
nrmse <- max(nrmse)
# Compute cosine similarity
cos <- compute_cosine(raw_run, reference)
cos <- min(cos)
# Return
c(converged = succ, nrmse = nrmse, cos = cos)
}
## -----------------------------------------------------------------------------
print(bench::mark(stat.fn(model$run(sim_hours))))
print(bench::mark(model$run(sim_hours)))
## -----------------------------------------------------------------------------
scan <-
grid_scan(model_gen, grid, apply.fn = stat.fn,
n.core = 1, custom.export = "default_attractor",
sim_hours)
process_scan <- function(){
.scanDF <- scan |> unlist(use.names = FALSE) |> matrix(ncol = 3, byrow=TRUE)
colnames(.scanDF) <- names(scan[[1]])
result <- cbind(grid, .scanDF |> as.data.frame())
summary(
result |> select(converged, nrmse, cos)
)
}
process_scan()
## ----fig.show="hold",out.width="30%"------------------------------------------
# Rerun scan
scan <-
grid_scan(model_gen, grid, apply.fn = identity,
n.core = 1, custom.export = "default_attractor",
sim_hours)
# Show first and last of grid
first <- grid[1,]
last <- grid[nrow(grid),]
print(first)
print(last)
plot(plot_phase(scan[[1]] |> as.data.frame(), M_T, C_N))
plot(plot_phase(scan[[nrow(grid)]] |> as.data.frame(), M_T, C_N))
## -----------------------------------------------------------------------------
new_grid <- grid
new_grid$k_sT <- 1.8 # 2X of original, check model$content()
new_model <- model_gen$new()
new_model$set_user(k_sT = 1.8)
default_attractor <- new_model$run(sim_hours)
default_attractor <-
default_attractor[(length(sim_hours)-240):length(sim_hours),]
# Then, repeat the same code above.
scan <-
grid_scan(model_gen, new_grid, apply.fn = stat.fn,
n.core = 1, custom.export = "default_attractor",
sim_hours)
process_scan()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.