R/agnes.q

Defines functions as.dendrogram.twins print.summary.agnes print.agnes summary.agnes agnes

Documented in agnes print.agnes print.summary.agnes summary.agnes

#### $Id: agnes.q 8117 2022-08-19 13:26:09Z maechler $

agnes <- function(x, diss = inherits(x, "dist"), metric = "euclidean",
		  stand = FALSE, method = "average", par.method,
                  keep.diss = n < 100, keep.data = !diss, trace.lev = 0)
{
    METHODS <- c("average", "single","complete", "ward","weighted", "flexible", "gaverage")
    ## hclust has more;  1    2         3           4       5         6         7
    meth <- pmatch(method, METHODS)
    if(is.na(meth)) stop("invalid clustering method")
    if(meth == -1) stop("ambiguous clustering method")
    cl. <- match.call()
    method <- METHODS[meth]
    if(method == "flexible") {
	## Lance-Williams formula (but *constant* coefficients):
	stopifnot((np <- length(a <- as.numeric(par.method))) >= 1)
	attr(method,"par") <- par.method <-
	    if(np == 1)## default (a1= a, a2= a, b= 1-2a, c = 0)
		c(a, a, 1-2*a, 0)
	    else if(np == 3)
		c(a, 0)
	    else if(np == 4) a
	    else stop("'par.method' must be of length 1, 3, or 4")
        ## if(any(par.method[1:2]) < 0)
        ##     warning("method \"flexible\": alpha_1 or alpha_2 < 0 can give invalid dendrograms"
    } else if (method == "gaverage") {
	attr(method,"par") <- par.method <- if (missing(par.method)) {
	    ## Default par.method: Using beta = -0.1 as advised in Belbin et al. (1992)
	    beta <- -0.1
	    c(1-beta, 1-beta, beta, 0)
	} else {
	    stopifnot((np <- length(b <- as.numeric(par.method))) >= 1)
	    if(np == 1)## default (a1= 1-b, a2= 1-b, b= b, c= 0)
		c(1-b, 1-b, b, 0)
	    else if(np == 3)
		c(b, 0)
	    else if(np == 4) b
	    else stop("'par.method' must be of length 1, 3, or 4")
	}
        ## if(any(par.method[1:2]) < 0)
        ##     warning("method \"gaverage\": alpha_1 or alpha_2 < 0 can give invalid dendrograms"
    } else ## dummy (passed to C)
	par.method <- double()

    if((diss <- as.logical(diss))) {
	## check type of input vector
	if(anyNA(x)) stop("NA-values in the dissimilarity matrix not allowed.")
	if(data.class(x) != "dissimilarity") { # try to convert to
	    if(!is.null(dim(x))) {
		x <- as.dist(x) # or give an error
	    } else {
		## possibly convert input *vector*
		if(!is.numeric(x) || is.na(n <- sizeDiss(x)))
		    stop("'x' is not and cannot be converted to class \"dissimilarity\"")
		attr(x, "Size") <- n
	    }
	    class(x) <- dissiCl
	    if(is.null(attr(x,"Metric"))) attr(x, "Metric") <- "unspecified"
	}
	n <- attr(x, "Size")
	dv <- x[lower.to.upper.tri.inds(n)]
	## prepare arguments for the Fortran call
	dv <- c(0., dv)# "double", 1st elem. "only for Fortran" (?)
	jp <- 1L
	mdata <- FALSE
	ndyst <- 0
	x2 <- double(1)
    }
    else {
	## check input matrix and standardize, if necessary
	x <- data.matrix(x)
	if(!is.numeric(x)) stop("x is not a numeric dataframe or matrix.")
	x2 <- if(stand) scale(x, scale = apply(x, 2, meanabsdev)) else x
        storage.mode(x2) <- "double"
	ndyst <- if(metric == "manhattan") 2 else 1
	n <- nrow(x2)
	jp <- ncol(x2)
	if((mdata <- any(inax <- is.na(x2)))) { # TRUE if x[] has any NAs
	    jtmd <- integer(jp)
	    jtmd[apply(inax, 2L, any)] <- -1L
	    ## VALue for MISsing DATa
	    valmisdat <- 1.1* max(abs(range(x2, na.rm=TRUE)))
	    x2[inax] <- valmisdat
	}
	dv <- double(1 + (n * (n - 1))/2)
    }
    if(n <= 1) stop("need at least 2 objects to cluster")
    stopifnot(length(trace.lev <- as.integer(trace.lev)) == 1)
    C.keep.diss <- keep.diss && !diss
    res <- .C(twins,
		    as.integer(n),
		    as.integer(jp),
		    x2,
		    dv,
		    dis = double(if(C.keep.diss) length(dv) else 1),
		    jdyss = if(C.keep.diss) diss + 10L else as.integer(diss),
		    if(mdata) rep(valmisdat, jp) else double(1),
		    if(mdata) jtmd else integer(jp),
		    as.integer(ndyst),
		    1L,# jalg = 1 <==> AGNES
		    meth,# integer
		    integer(n),
		    ner = integer(n),
		    ban = double(n),
		    ac = double(1),
                    par.method,
		    merge = matrix(0L, n - 1, 2), # integer
                    trace = trace.lev)
    if(!diss) {
	##give warning if some dissimilarities are missing.
	if(res$jdyss == -1)
	    stop("No clustering performed, NA-values in the dissimilarity matrix.\n" )
        if(keep.diss) {
            ## adapt Fortran output to S:
            ## convert lower matrix,read by rows, to upper matrix, read by rows.
            disv <- res$dis[-1]
            disv[disv == -1] <- NA
            disv <- disv[upper.to.lower.tri.inds(n)]
            class(disv) <- dissiCl
            attr(disv, "Size") <- nrow(x)
            attr(disv, "Metric") <- metric
            attr(disv, "Labels") <- dimnames(x)[[1]]
        }
	##add labels to Fortran output
	if(length(dimnames(x)[[1]]) != 0)
	    order.lab <- dimnames(x)[[1]][res$ner]
    }
    else {
        if(keep.diss) disv <- x
	##add labels to Fortran output
	if(length(attr(x, "Labels")) != 0)
	    order.lab <- attr(x, "Labels")[res$ner]
    }
    clustering <- list(order = res$ner, height = res$ban[-1], ac = res$ac,
		       merge = res$merge, diss = if(keep.diss)disv,
		       call = cl., method = METHODS[meth])
    if(exists("order.lab"))
	clustering$order.lab <- order.lab
    if(keep.data && !diss) {
	if(mdata) x2[x2 == valmisdat] <- NA
	clustering$data <- x2
    }
    class(clustering) <- c("agnes", "twins")
    clustering
}

summary.agnes <- function(object, ...)
{
    class(object) <- "summary.agnes"
    object
}

print.agnes <- function(x, ...)
{
    cat("Call:	", deparse1(x$call),
	"\nAgglomerative coefficient: ", format(x$ac, ...),
	"\nOrder of objects:\n")
    print(if(length(x$order.lab) != 0) x$order.lab else x$order,
	  quote = FALSE, ...)
    cat("Height (summary):\n");		print(summary(x$height), ...)
    cat("\nAvailable components:\n");	print(names(x), ...)
    invisible(x)
}

print.summary.agnes <- function(x, ...)
{
    ## a bit more than print.agnes() ..
    cat("Object of class 'agnes' from call:\n", deparse1(x$call),
	"\nAgglomerative coefficient: ", format(x$ac, ...),
	"\nOrder of objects:\n")
    print(if(length(x$order.lab) != 0) x$order.lab else x$order,
	  quote = FALSE, ...)
    cat("Merge:\n");			print(x$merge, ...)
    cat("Height:\n");			print(x$height, ...)
    if(!is.null(x$diss)) { ## Dissimilarities:
	cat("\n");			print(summary(x$diss, ...))
    }
    cat("\nAvailable components:\n");	print(names(x), ...)
    invisible(x)
}

as.dendrogram.twins <- function(object, ...) ## ... : really only 'hang'
    as.dendrogram(as.hclust(object), ...)

Try the cluster package in your browser

Any scripts or data that you put into this service are public.

cluster documentation built on Nov. 28, 2023, 1:07 a.m.