Nothing
#### $Id: agnes.q 8117 2022-08-19 13:26:09Z maechler $
agnes <- function(x, diss = inherits(x, "dist"), metric = "euclidean",
stand = FALSE, method = "average", par.method,
keep.diss = n < 100, keep.data = !diss, trace.lev = 0)
{
METHODS <- c("average", "single","complete", "ward","weighted", "flexible", "gaverage")
## hclust has more; 1 2 3 4 5 6 7
meth <- pmatch(method, METHODS)
if(is.na(meth)) stop("invalid clustering method")
if(meth == -1) stop("ambiguous clustering method")
cl. <- match.call()
method <- METHODS[meth]
if(method == "flexible") {
## Lance-Williams formula (but *constant* coefficients):
stopifnot((np <- length(a <- as.numeric(par.method))) >= 1)
attr(method,"par") <- par.method <-
if(np == 1)## default (a1= a, a2= a, b= 1-2a, c = 0)
c(a, a, 1-2*a, 0)
else if(np == 3)
c(a, 0)
else if(np == 4) a
else stop("'par.method' must be of length 1, 3, or 4")
## if(any(par.method[1:2]) < 0)
## warning("method \"flexible\": alpha_1 or alpha_2 < 0 can give invalid dendrograms"
} else if (method == "gaverage") {
attr(method,"par") <- par.method <- if (missing(par.method)) {
## Default par.method: Using beta = -0.1 as advised in Belbin et al. (1992)
beta <- -0.1
c(1-beta, 1-beta, beta, 0)
} else {
stopifnot((np <- length(b <- as.numeric(par.method))) >= 1)
if(np == 1)## default (a1= 1-b, a2= 1-b, b= b, c= 0)
c(1-b, 1-b, b, 0)
else if(np == 3)
c(b, 0)
else if(np == 4) b
else stop("'par.method' must be of length 1, 3, or 4")
}
## if(any(par.method[1:2]) < 0)
## warning("method \"gaverage\": alpha_1 or alpha_2 < 0 can give invalid dendrograms"
} else ## dummy (passed to C)
par.method <- double()
if((diss <- as.logical(diss))) {
## check type of input vector
if(anyNA(x)) stop("NA-values in the dissimilarity matrix not allowed.")
if(data.class(x) != "dissimilarity") { # try to convert to
if(!is.null(dim(x))) {
x <- as.dist(x) # or give an error
} else {
## possibly convert input *vector*
if(!is.numeric(x) || is.na(n <- sizeDiss(x)))
stop("'x' is not and cannot be converted to class \"dissimilarity\"")
attr(x, "Size") <- n
}
class(x) <- dissiCl
if(is.null(attr(x,"Metric"))) attr(x, "Metric") <- "unspecified"
}
n <- attr(x, "Size")
dv <- x[lower.to.upper.tri.inds(n)]
## prepare arguments for the Fortran call
dv <- c(0., dv)# "double", 1st elem. "only for Fortran" (?)
jp <- 1L
mdata <- FALSE
ndyst <- 0
x2 <- double(1)
}
else {
## check input matrix and standardize, if necessary
x <- data.matrix(x)
if(!is.numeric(x)) stop("x is not a numeric dataframe or matrix.")
x2 <- if(stand) scale(x, scale = apply(x, 2, meanabsdev)) else x
storage.mode(x2) <- "double"
ndyst <- if(metric == "manhattan") 2 else 1
n <- nrow(x2)
jp <- ncol(x2)
if((mdata <- any(inax <- is.na(x2)))) { # TRUE if x[] has any NAs
jtmd <- integer(jp)
jtmd[apply(inax, 2L, any)] <- -1L
## VALue for MISsing DATa
valmisdat <- 1.1* max(abs(range(x2, na.rm=TRUE)))
x2[inax] <- valmisdat
}
dv <- double(1 + (n * (n - 1))/2)
}
if(n <= 1) stop("need at least 2 objects to cluster")
stopifnot(length(trace.lev <- as.integer(trace.lev)) == 1)
C.keep.diss <- keep.diss && !diss
res <- .C(twins,
as.integer(n),
as.integer(jp),
x2,
dv,
dis = double(if(C.keep.diss) length(dv) else 1),
jdyss = if(C.keep.diss) diss + 10L else as.integer(diss),
if(mdata) rep(valmisdat, jp) else double(1),
if(mdata) jtmd else integer(jp),
as.integer(ndyst),
1L,# jalg = 1 <==> AGNES
meth,# integer
integer(n),
ner = integer(n),
ban = double(n),
ac = double(1),
par.method,
merge = matrix(0L, n - 1, 2), # integer
trace = trace.lev)
if(!diss) {
##give warning if some dissimilarities are missing.
if(res$jdyss == -1)
stop("No clustering performed, NA-values in the dissimilarity matrix.\n" )
if(keep.diss) {
## adapt Fortran output to S:
## convert lower matrix,read by rows, to upper matrix, read by rows.
disv <- res$dis[-1]
disv[disv == -1] <- NA
disv <- disv[upper.to.lower.tri.inds(n)]
class(disv) <- dissiCl
attr(disv, "Size") <- nrow(x)
attr(disv, "Metric") <- metric
attr(disv, "Labels") <- dimnames(x)[[1]]
}
##add labels to Fortran output
if(length(dimnames(x)[[1]]) != 0)
order.lab <- dimnames(x)[[1]][res$ner]
}
else {
if(keep.diss) disv <- x
##add labels to Fortran output
if(length(attr(x, "Labels")) != 0)
order.lab <- attr(x, "Labels")[res$ner]
}
clustering <- list(order = res$ner, height = res$ban[-1], ac = res$ac,
merge = res$merge, diss = if(keep.diss)disv,
call = cl., method = METHODS[meth])
if(exists("order.lab"))
clustering$order.lab <- order.lab
if(keep.data && !diss) {
if(mdata) x2[x2 == valmisdat] <- NA
clustering$data <- x2
}
class(clustering) <- c("agnes", "twins")
clustering
}
summary.agnes <- function(object, ...)
{
class(object) <- "summary.agnes"
object
}
print.agnes <- function(x, ...)
{
cat("Call: ", deparse1(x$call),
"\nAgglomerative coefficient: ", format(x$ac, ...),
"\nOrder of objects:\n")
print(if(length(x$order.lab) != 0) x$order.lab else x$order,
quote = FALSE, ...)
cat("Height (summary):\n"); print(summary(x$height), ...)
cat("\nAvailable components:\n"); print(names(x), ...)
invisible(x)
}
print.summary.agnes <- function(x, ...)
{
## a bit more than print.agnes() ..
cat("Object of class 'agnes' from call:\n", deparse1(x$call),
"\nAgglomerative coefficient: ", format(x$ac, ...),
"\nOrder of objects:\n")
print(if(length(x$order.lab) != 0) x$order.lab else x$order,
quote = FALSE, ...)
cat("Merge:\n"); print(x$merge, ...)
cat("Height:\n"); print(x$height, ...)
if(!is.null(x$diss)) { ## Dissimilarities:
cat("\n"); print(summary(x$diss, ...))
}
cat("\nAvailable components:\n"); print(names(x), ...)
invisible(x)
}
as.dendrogram.twins <- function(object, ...) ## ... : really only 'hang'
as.dendrogram(as.hclust(object), ...)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.