Nothing
#-------------------------------------------------------------------------------
#' Derivatives and Information for Omega
#'
#' This function calculates the matrix of first partial derivatives, the matrix
#' of second partial derivatives, and matrix of posterior and Fisher information
#' for the posterior distribution with respect to omega (ability) based on the
#' slope-intercept form of the 1-, 2-, or 3-parameter item response theory
#' model.
#'
#' @param y Item response matrix (K by IJ).
#' @param omega Contrast effects matrix (K by
#' MN).
#' @param gamma Contrast codes matrix (JM by MN).
#' @param lambda Item slope matrix (IJ by JM).
#' @param zeta Specific effects matrix (K by
#' JM).
#' @param nu Item intercept matrix (IJ by 1).
#' @param kappa Item guessing matrix (IJ by 1). Defaults to 0.
#' @param omega_mu Mean prior for omega (1 by MN).
#' @param omega_sigma2 Covariance prior for omega (MN by MN).
#' @param zeta_mu Mean prior for zeta (1 by JM).
#' @param zeta_sigma2 Covariance prior for zeta (JM by JM).
#' @param est_zeta Logical indicating whether or not to estimate zeta
#' derivatives
#' @param link Choose between "logit" or "probit" link functions.
#'
#' @return List with elements fpd (1 by MN vector of first partial derivatives
#' for omega), spd (MN by MN matrix of second partial derivatives for omega),
#' post_info (MN by MN posterior information matrix for omega), and fisher_info
#' (MN by MN Fisher information matrix for omega). Within each of these
#' elements, there are sub-elements for all K examinees.
#'
#' @section Dimensions:
#' I = Number of items per condition; J = Number of conditions; K = Number of
#' examinees; M Number of ability (or trait) dimensions; N Number of contrasts
#' (should include intercept).
#'
#' @references
#'
#' Segall, D. O. (1996). Multidimensional adaptive testing.
#' \emph{Psychometrika, 61(2)}, 331-354. https://doi.org/10.1007/BF02294343
#'
#' Segall, D. O. (2009). Principles of Multidimensional Adaptive Testing. In W.
#' J. van der Linden & C. A. W. Glas (Eds.), \emph{Elements of Adaptive Testing}
#' (pp. 57-75). https://doi.org/10.1007/978-0-387-85461-8_3
#'
#' @section A Note About Model Notation:
#' The function converts GLLVM notation to the more typical IRT notation used by
#' Segall (1996) for ease of referencing formulas (with the exception of using
#' the slope-intercept form of the item response model).
#'
#' @keywords internal
#-------------------------------------------------------------------------------
deriv_omega <- function(y = NULL, omega = NULL, gamma = NULL, lambda = NULL,
zeta = NULL, nu = NULL, kappa = NULL, omega_mu = NULL,
omega_sigma2 = NULL, zeta_mu = NULL, zeta_sigma2 = NULL,
est_zeta = TRUE, link = NULL) {
link <- if (is.null(x = link)) {
"probit"
} else {
link
}
c <- if (is.null(x = kappa)) {
array(data = 0, dim = dim(x = y))
} else {
array(data = 1, dim = c(nrow(x = y), 1)) %*% t(kappa)
}
if (est_zeta) {
a <- cbind(lambda %*% gamma, lambda)
sigma2 <- diag(x = 0, nrow = nrow(x = omega_sigma2) + nrow(zeta_sigma2))
sigma2[seq_len(nrow(x = omega_sigma2)), seq_len(nrow(x = omega_sigma2))] <-
omega_sigma2
sigma2[(1 + nrow(x = omega_sigma2)):(nrow(x = omega_sigma2)
+ nrow(zeta_sigma2)),
(1 + nrow(x = omega_sigma2)):(nrow(x = omega_sigma2)
+ nrow(zeta_sigma2))] <- zeta_sigma2
theta <- cbind(omega, zeta)
mu <- cbind(omega_mu, zeta_mu)
} else {
a <- lambda %*% gamma
sigma2 <- diag(x = 0, nrow = nrow(x = omega_sigma2))
sigma2[seq_len(nrow(x = omega_sigma2)), seq_len(nrow(x = omega_sigma2))] <-
omega_sigma2
theta <- omega
mu <- omega_mu
}
mod <- dich_response_model(y = y, nu = nu, lambda = lambda, gamma = gamma,
omega = omega, zeta = zeta, kappa = kappa,
link = link)
p <- mod$p
D <- if (link == "logit") {
1.000
} else if (link == "probit") {
1.702
}
# Segall (1996) Equation 25; Segall (2009) Appendix
fpd <- list()
for (i in seq_len(length.out = nrow(x = theta))) {
fpd[[i]] <- t(
(
D * apply(X = (
a * matrix(data = ((p[i, ] - c[i, ]) * (y[i, ] - p[i, ])),
nrow = nrow(x = a),
ncol = ncol(x = a),
byrow = FALSE)
) /
matrix(data = (1 - c[i, ]) * p[i, ],
nrow = nrow(x = a),
ncol = ncol(x = a),
byrow = FALSE),
MARGIN = 2,
FUN = sum,
na.rm = TRUE)
) - solve(a = sigma2) %*% t(theta[i, , drop = FALSE] - mu)
)
}
# Segall (1996) Equations 30 & 31; Segall (2009) Appendix
spd <- list()
for (i in seq_len(length.out = nrow(x = theta))) {
spd[[i]] <- matrix(data = NA,
nrow = ncol(x = theta[i, , drop = FALSE]),
ncol = ncol(x = theta[i, , drop = FALSE]))
diag(spd[[i]]) <- D^2 *
apply(X =
(
a^2 *
matrix(data = (1 - p[i, ]) * ((p[i, ] - c[i, ]) *
(c[i, ] * y[i, ] - p[i, ]^2)),
nrow = nrow(x = a),
ncol = ncol(x = a),
byrow = FALSE)
) /
matrix(data = (p[i, ]^2) * (1 - c[i, ])^2,
nrow = nrow(x = a),
ncol = ncol(x = a),
byrow = FALSE),
MARGIN = 2,
FUN = sum,
na.rm = TRUE) - diag(x = solve(a = sigma2))
spd[[i]][lower.tri(spd[[i]])] <-
D^2 *
apply(X = (
apply(X = a, MARGIN = 1, FUN = prod) *
matrix(data = (1 - p[i, ]) * ((p[i, ] - c[i, ]) *
(c[i, ] * y[i, ] - p[i, ]^2)),
nrow = nrow(x = a),
ncol = 1,
byrow = FALSE)
) /
matrix((p[i, ]^2) * (1 - c[i, ])^2,
nrow = nrow(x = a),
ncol = 1,
byrow = FALSE),
MARGIN = 2,
FUN = sum,
na.rm = TRUE) -
solve(a = sigma2)[lower.tri(solve(a = sigma2))]
spd[[i]][upper.tri(x = spd[[i]])] <- spd[[i]][lower.tri(x = spd[[i]])]
}
# Segall (2009) Appendix Equations 3.13
post_info <- list()
for (i in seq_len(length.out = nrow(x = theta))) {
post_info[[i]] <-
solve(a = sigma2) +
apply(X = D^2 *
array(data = apply(X = a,
MARGIN = 1,
FUN = function(x) {
x %*% t(x)
}
),
dim = c(nrow(x = sigma2), nrow(x = sigma2), nrow(x = a))) *
array(data = sapply(X = (1 - p[i, ]) / p[i, ] *
((p[i, ] - c[i, ]) / (1 - c[i, ]))^2,
FUN = rep,
times = nrow(x = sigma2) * nrow(x = sigma2)),
dim = c(nrow(x = sigma2), nrow(x = sigma2), nrow(x = a))),
MARGIN = c(1, 2),
FUN = sum)
}
return(
list(
"fpd" = lapply(X = fpd, FUN = function(x) {
x[seq_len(nrow(x = omega_sigma2))]
}),
"spd" = lapply(X = spd, FUN = function(x) {
x[seq_len(nrow(x = omega_sigma2)), seq_len(nrow(x = omega_sigma2))]
}),
"post_info" = lapply(X = post_info, FUN = function(x) {
x[seq_len(nrow(x = omega_sigma2)), seq_len(nrow(x = omega_sigma2))]
}),
"fisher_info" = lapply(X = post_info, FUN = function(x) {
x[seq_len(nrow(x = omega_sigma2)), seq_len(nrow(x = omega_sigma2))] * -1
})
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.